next up previous contents
Next: 5.4.2 Dirichlet Type Up: 5.4 Boundaries Previous: 5.4 Boundaries

5.4.1 Neumann Type

For Neumann boundary conditions one gets
f$\scriptstyle \nu_{i}$ = fS$\scriptstyle \nu_{i}$ + F$\scriptstyle \nu_{i,C}$ = 0 (5.16)
fFC = FC + $\displaystyle \sum_{i}^{}$fS$\scriptstyle \nu_{i}$ = 0 (5.17)

with i running over all segment grid points. $ \mathbb {T}$B reads (for two example grid points i1 and i2)

tx, y $ \nu_{i_{1}}^{}$ $ \nu_{i_{2}}^{}$ FC
$ \nu_{i_{1}}^{}$ 1    
$ \nu_{i_{2}}^{}$   1  
FC 1 1  

Since there is no segment model for FC the respective column is arbitrary.



Tibor Grasser
1999-05-31