next up previous contents
Next: 5.5 Contact Model Up: 5.4 Boundaries Previous: 5.4.1 Neumann Type

5.4.2 Dirichlet Type

For Dirichlet boundary conditions one gets
f$\scriptstyle \nu_{i}$ = $\displaystyle \nu_{C}^{}$ - h($\displaystyle \nu_{i}^{}$) = 0 (5.18)
fFC = FC + $\displaystyle \sum_{i}^{}$fS$\scriptstyle \nu_{i}$ = 0 (5.19)

Here, $ \nu_{C}^{}$ is the boundary value of the quantity, which is a solution variable, whereas (5.19) is used as constitutive relation for the actual flow over the boundary FC.

$ \mathbb {T}$B reads, again for two example grid points i1 and i2

tx, y $ \nu_{i_{1}}^{}$ $ \nu_{i_{2}}^{}$ FC
$ \nu_{i_{1}}^{}$      
$ \nu_{i_{2}}^{}$      
FC 1 1  

The rows for $ \nu_{i_{1}}^{}$ and $ \nu_{i_{2}}^{}$ are zero since substitute equations will directly be provided in the boundary matrix $ \mathbb {T}$B.



Tibor Grasser
1999-05-31