3.3.2.1 Continuity and Balance Equations

The balance equations (2.184) to (2.186) are discretized in the same manner as POISSON's equation. Integrating over the control volume $ \ensuremath{\mathcal{ V }}_i$ and applying the theorem of GAUSS yields

$\displaystyle \ensuremath{\oint_{\partial \ensuremath{\mathcal{ V }}_i} \ensure...
...ath{\cdot}\ensuremath{\boldsymbol{\mathrm{J}}}_n \,\, \ensuremath{\mathrm{d}}A}$ $\displaystyle = \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} - s_n \, \mathrm{q}\, (\ensuremath{\partial_{t} \, n} + R) \,\, \ensuremath{\mathrm{d}}V}\ ,$ (3.23)
$\displaystyle \ensuremath{\oint_{\partial \ensuremath{\mathcal{ V }}_i} \ensure...
...ath{\cdot}\ensuremath{\boldsymbol{\mathrm{S}}}_n \,\, \ensuremath{\mathrm{d}}A}$ $\displaystyle = \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} - \mathrm{C}_2 ...
...m{L}}{\tau_\mathcal{E}} + G_{\mathcal{E}\, n} \,\, \ensuremath{\mathrm{d}}V}\ ,$ (3.24)
$\displaystyle \ensuremath{\oint_{\partial \ensuremath{\mathcal{ V }}_i} \ensure...
...ath{\cdot}\ensuremath{\boldsymbol{\mathrm{K}}}_n \,\, \ensuremath{\mathrm{d}}A}$ $\displaystyle = \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} - \mathrm{C}_4 ...
...T_\mathrm{L}^2} {\tau_\beta} + G_{\beta \, n} \,\, \ensuremath{\mathrm{d}}V}\ .$ (3.25)

The terms $ \ensuremath{\boldsymbol{\mathrm{E}}} \ensuremath{\cdot}\ensuremath{\boldsymbol{\mathrm{J}}}_n$ and $ \ensuremath{\boldsymbol{\mathrm{E}}} \ensuremath{\cdot}\ensuremath{\boldsymbol{\mathrm{S}}}_n$ are again discretized by the box integration method. Writing the electric field as the negative gradient of the electric potential and using the product rule the first term becomes

$\displaystyle \ensuremath{\boldsymbol{\mathrm{E}}}\ensuremath{\cdot}\ensuremath...
...{\mathrm{\nabla}}}}\ensuremath{\cdot}\ensuremath{\boldsymbol{\mathrm{J}}}_n}\ .$ (3.26)

Integration over the control volume $ \ensuremath{\mathcal{ V }}_i$, applying the theorem of GAUSS, and approximating the integrals by sums yields

$\displaystyle \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} \ensuremath{\bold...
...ath{\cdot}\ensuremath{\boldsymbol{\mathrm{J}}}_n \,\, \ensuremath{\mathrm{d}}V}$ $\displaystyle \approx - \ensuremath{\oint_{\partial \ensuremath{\mathcal{ V }}_...
...ath{\cdot}\ensuremath{\boldsymbol{\mathrm{J}}}_n \,\, \ensuremath{\mathrm{d}}A}$ (3.27)
  $\displaystyle \approx - \sum_j \, \frac{\psi_i + \psi_j}{2} \, J_{n \, ij} \, A_{ij} + \psi_i \, \sum_j \, J_{n \, ij} \, A_{ij} \ ,$ (3.28)

where a linear variation of the potential between two grid points has been assumed. By combining the sums the discrete representation of $ \ensuremath{\boldsymbol{\mathrm{E}}} \ensuremath{\cdot}\ensuremath{\boldsymbol{\mathrm{J}}}_n$ is obtained

$\displaystyle \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} \ensuremath{\bold...
...}\approx - \sum_j \, \frac{\psi_i - \psi_j} {2} \, J_{n \, ij} \, \, A_{ij} \ .$ (3.29)

By analogy, the discretization of $ \ensuremath{\boldsymbol{\mathrm{E}}} \ensuremath{\cdot}\ensuremath{\boldsymbol{\mathrm{S}}}_n$ looks

$\displaystyle \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} \ensuremath{\bold...
...}\approx - \sum_j \, \frac{\psi_i - \psi_j} {2} \, S_{n \, ij} \, \, A_{ij} \ .$ (3.30)

Using eqns. (3.29) and (3.30) the discretization of the continuity equations can be concluded

$\displaystyle \sum_j \, J_{n \, ij} \, A_{ij} = - s_n \, \mathrm{q}\, \bigl(\ensuremath{\partial_{t} \, n_i}+ R_i \bigr) \, V_i \ ,$ (3.31)

$\displaystyle \sum_j \, S_{n \, ij} \, A_{ij} = - \Bigl(\mathrm{C}_2 \, \ensure...
...igr) \, V_i - \sum_j \, \frac{\psi_i - \psi_j} {2} \, J_{n \, ij} \, A_{ij} \ ,$ (3.32)

$\displaystyle \sum_j \, K_{n \, ij} \, A_{ij} = - \Bigl(\mathrm{C}_4 \, \ensure...
... \mathrm{q}\, \sum_j \, \frac{\psi_i - \psi_j} {2} \, S_{n \, ij} \, A_{ij} \ ,$ (3.33)

where $ J_{n \, ij}$, $ S_{n \, ij}$, $ K_{n \, ij}$ are the projections of the fluxes $ \ensuremath{\boldsymbol{\mathrm{J_n}}}$, $ \ensuremath{\boldsymbol{\mathrm{S_n}}}$, $ \ensuremath{\boldsymbol{\mathrm{K_n}}}$ onto the grid edge $ \ensuremath{\boldsymbol{\mathrm{e}}}_{ij}$.

M. Gritsch: Numerical Modeling of Silicon-on-Insulator MOSFETs PDF