12.5.1 The Heterogeneous Deposition Model

This deposition model consists of the two reaction steps

$\displaystyle \textsc{teos}\xspace _{\mathrm{(g)}} + 2S$ $\displaystyle \overset{k_a}{\rightleftarrows}$ $\displaystyle 2I$  
$\displaystyle I$ $\displaystyle \overset{k_d}{\rightarrow}$ $\displaystyle \textrm{SiO$_2$}\xspace _{\mathrm{(s)}} + S + 2 \textrm{H$_2$O}\xspace _{\mathrm{(g)}} + 4\mathrm{C_2H_4}_{\mathrm{(g)}},$  

where $ S$ represents a surface site and $ I$ an unspecified surface intermediate. $ \mathrm{(g)}$ and $ \mathrm{(s)}$ denote gas phase resp. solid phase.

Using the Langmuir adsorption model and assuming that the decomposition of the surface intermediate $ I$ determines the rate, the SiO$ _2$ deposition rate is given by

$\displaystyle R_1 = { k_d \sqrt{k_a P_\textsc{teos}\xspace } \over 1 + \sqrt{k_a P_\textsc{teos}\xspace }},
$

where $ P_\textsc{teos}\xspace $ is the local partial pressure of TEOS.

A variant of this reaction scheme is the following: If it is assumed that TEOS adsorbs molecularly and that uni-molecular heterogeneous decomposition of adsorbed TEOS determines the rate, then the deposition rate is

$\displaystyle R_2 = { k_d k_a P_\textsc{teos}\xspace \over 1 + k_a P_\textsc{teos}\xspace }.
$

Clemens Heitzinger 2003-05-08