12.5.2 The Homogeneous Intermediate-Mediated Deposition Model

In the homogeneous intermediate-mediated deposition model TEOS partially decomposes in the gas phase and the reaction steps are

$\displaystyle \textsc{teos}\xspace _{\mathrm{(g)}}$ $\displaystyle \overset{k_g}{\rightleftarrows}$ $\displaystyle I_{\mathrm{(g)}} + R_{\mathrm{(g)}}$  
$\displaystyle I_{\mathrm{(g)}} + S$ $\displaystyle \overset{k_I}{\rightleftarrows}$ $\displaystyle I$  
$\displaystyle I$ $\displaystyle \overset{k_d}{\rightarrow}$ $\displaystyle \textrm{SiO$_2$}\xspace _{\mathrm{(s)}} + S + \mathrm{byproducts}_{\mathrm{(g)}},$  

where $ R$ is an unspecified byproduct of the homogeneous partial dissociation step and $ I_{\mathrm{(g)}}$ is an unspecified gas phase derivative of TEOS. Again $ S$ is a surface site and $ I$ is an unspecified surface intermediate.

Assuming that the surface decomposition step is rate limiting and that the preceding steps are in equilibrium, the deposition rate is

$\displaystyle R_3 = { k_d k_I P_I \over 1 + k_I P_I }
= { k_d k_I \sqrt{k_g P_\textsc{teos}\xspace } \over 1 + k_I \sqrt{k_g P_\textsc{teos}\xspace } }.
$

Clemens Heitzinger 2003-05-08