next up previous contents
Next: Matrix Notation Up: C.1 One Homogeneous Planar Previous: Electric Field

Magnetic Field

With the help of the orthogonality requirement Hl$\scriptstyle \pm$ = 1/($ \eta_{0}^{}$klk$\scriptstyle \pm$l x E$\scriptstyle \pm$l the magnetic field phasors Hl+ and Hl- are easily calculated from the electric ones. From (C.1) we obtain similar to (C.5) for the z-dependent part of the lateral magnetic field components

$\displaystyle \begin{alignedat}{2}H_{l,x}(z) &=\textstyle \frac{1}{\eta_0k_l}\l...
..._0k_l}\left(-k_{l,z}E^-_{l,x}-k_xE^-_{l,z}\right)e^{-jk_{l,z}z}.\end{alignedat}$    

The vertical amplitudes E$\scriptstyle \pm$l, z can readily be eliminated with the help of (C.4) resulting in

$\displaystyle H_{l,x}(z)$ $\displaystyle =\!\textstyle \left(-\frac{k_xk_y}{\eta_0k_lk_{l,z}}E^+_{l,x} -\f...
...E^-_{l,x} +\frac{k_y^2+k_{l,z}^2}{\eta_0k_lk_{l,z}} E^-_y\right) e^{-jk_{l,z}z}$    
$\displaystyle H_{l,y}(z)$ $\displaystyle =\!\textstyle \left(+\frac{k_x^2+k_{l,z}^2}{\eta_0k_lk_{l,z}} E^+...
...z}} E^-_{l,x} -\frac{k_xk_y}{\eta_0k_lk_{l,z}} E^-_{l,y}\right) e^{-jk_{l,z}z}.$ (C.5)



Heinrich Kirchauer, Institute for Microelectronics, TU Vienna
1998-04-17