previous up next contents Previous: 7.2 The Open Von Up: 7.2 The Open Von Next: 7.2.2 Open System


7.2.1 Separation of Neumann Equation

For the Hamiltonian 6.2 the von Neumann equation for the density matrix $ \rho(x_1, x_2, t)$ reads

$\displaystyle \imath \hbar \frac{\partial \rho}{\partial t}   =   [ H, \rho ]...
...^2} - \frac{{\partial}^2}{\partial{x_2}^2} ) \rho + (V(x_1) - V(x_2)) \rho   .$ (7.11)

To regain the Schrödinger equation from the von Neumann equation we make a separation ansatz for the density $ \rho$:

$\displaystyle \rho(x_1,x_2, t) = \psi(x_1, t) \phi(x_2, t).$ (7.12)

We get (omitting $ t$ in the function arguments)

\begin{gather*}\begin{split}& \imath \hbar \big(\psi_t(x_1) \phi(x_2) + \psi(x_1...
...) \phi(x_2) - \psi(x_1) \triangle_{x_2} \phi(x_2)\bigg) \end{split}\end{gather*} (7.13)

Factoring out $ \psi(x_1)$ and $ \phi(x_2)$ gives

\begin{gather*}\begin{split}&\psi(x_1)\bigg(\imath \hbar \phi_t(x_2) - \frac{\hb...
...{*}} \triangle_{x_1} \psi(x_1) + \psi(x_1) V(x_1)\bigg) \end{split}\end{gather*} (7.14)

Division by $ \psi(x_1)\phi(x_2)$ separates the equation and we get (with $ E$ as separation constant)

$\displaystyle \imath \hbar \psi_t(x_1) = - \frac{\hbar^2}{2m^{*}} \triangle_{x_1} \psi(x_1) + V(x_1) \psi(x_1) - E \psi(x_1)   ,$ (7.15)
$\displaystyle \imath \hbar \phi_t(x_2) = \frac{\hbar^2}{2m^{*}} \triangle_{x_2} \phi(x_2) - V(x_2) \phi(x_2) + E \phi(x_2)   .$ (7.16)

If $ \psi$ is a solution to Equation 7.15 with separation constant $ E$, then $ \psi^*$ is a solution to Equation 7.16 with complex conjugate separation constant $ E^*$ and the density matrix $ \rho$ is of the form $ \psi(x_1) \psi^*(x_2)$ corresponding to a pure state.

We get an additional term $ E\psi(x,t)$ in the separated equation, which is at first surprising since we are not in the stationary case. However, the von Neumann equation is invariant under a change of $ V$ to $ V + E$, while the Schrödinger equation is not.

By separation of the transient von Neumann equation we get the Schrödinger equation with an additional term $ \tilde{E}\psi$. This shifts the value of $ E$ in the stationary Schrödinger equation. But varying $ E$ the set of solutions $ \psi$ stays the same. So we can set $ \tilde{E} = 0$ without loss of generality.

previous up next contents Previous: 7.2 The Open Von Up: 7.2 The Open Von Next: 7.2.2 Open System


R. Kosik: Numerical Challenges on the Road to NanoTCAD