[1] T. Windbacher, A. Makarov, H. Mahmoudi, V. Sverdlov, and S. Selberherr. Novel Bias-Field-Free Spin Transfer Oscillator. Journal of Applied Physics, 115(17):17C901–1–17C901–3, 2014.
[2] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Simulation of Magnetic Oscillations in a System of Two MTJs with a Shared Free Layer. In Abstracts Book of The 21st International Conference on Soft Magnetic Materials (SMM), page 101, Budapest, Hungary, 2013.
[3] A. Makarov, V. Sverdlov, and S. Selberherr. Bias-Field-Free Spin-Torque Oscillator Based on Two MgO-MTJs with a Shared Free Layer: Micromagnetic Modeling. In Abstracts International Symposium on Advanced Nanodevices and Nanotechnology (ISANN), Kauai, Hawaii, USA, 2013.
[4] A. Makarov, V. Sverdlov, and S. Selberherr. Composite Magnetic Tunnel Junctions for Fast Memory Devices and Efficient Spin-Torque Nano-Oscillators. In Abstracts International Conference on Information Engineering (ICIE), page 7, Hong Kong, 2013.
[5] A. Makarov, V. Sverdlov, and S. Selberherr. Concept of a Bias-Field-Free Spin-Torque Oscillator Based on Two MgO-MTJs. In Extended Abstracts of the 2013 International Conference on Solid State Devices and Materials (SSDM), pages 796–797, Fukuoka, Japan, 2013.
[6] A. Makarov, V. Sverdlov, and S. Selberherr. Fast Switching STT-MRAM Cells for Future Universal Memory. In Abstracts Advanced Workshop on Frontiers in Electronics (WOFE), San Juan, Puerto Rico, 2013.
[7] A. Makarov, V. Sverdlov, and S. Selberherr. Geometry Optimization of Spin-Torque Oscillators Composed of Two MgO-MTJs with a Shared Free Layer. In Proceedings of the International Conference on Nanoscale Magnetism (ICNM), page 69, Istanbul, Turkey, 2013.
[8] A. Makarov, V. Sverdlov, and S. Selberherr. Magnetic Oscillation of the Transverse Domain Wall in a Penta-Layer MgO-MTJ. In Proceedings of the 21st International Symposium Nanostructures, pages 338–339, St. Petersburg, Russian Federation, 2013.
[9] A. Makarov, V. Sverdlov, and S. Selberherr. Magnetic Tunnel Junctions with a Composite Free Layer: A New Concept for Future Universal Memory. In S. Luryi, J. Xu, and A. Zaslavsky, editors, Future Trends in Microelectronics - Frontiers and Innovations, pages 93–101. John Wiley & Sons, 2013.
[10] A. Makarov, V. Sverdlov, and S. Selberherr. Structural Optimization of MTJs with a Composite Free Layer. In Proceedings of the 16th International Workshop on Computational Electronics (IWCE), pages 74–75, Nara, Japan, 2013.
[11] A. Makarov, V. Sverdlov, and S. Selberherr. Structural Optimization of MTJs with a Composite Free Layer. In Abstracts SPIE NanoScience + Engineering Symposium, page 1, San Diego, CA, USA, 2013.
[12] A. Makarov, V. Sverdlov, and S. Selberherr. Transverse Domain Wall Formation in a Free Layer: A Mechanism for Switching Failure in a MTJ-Based STT-MRAM. In Proceedings of the 20th International Symposium on the Physical & Failure Analysis of Integrated Circuits (IPFA), pages 267–270, Suzhou, China, 2013.
[13] D. Osintsev, A. Makarov, V. Sverdlov, and S. Selberherr. Using Strain to Increase the Reliability of Scaled Spin MOSFETs. In Proceedings of the 20th International Symposium on the Physical & Failure Analysis of Integrated Circuits (IPFA), pages 770–773, Suzhou, China, 2013.
[14] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Current and Conductance Modulation at Elevated Temperature in Silicon and InAs-Based Spin Field-Effect Transistors. Sains Malaysiana, 42(2):205–211, 2013.
[15] V. Sverdlov, H. Mahmoudi, A. Makarov, D. Osintsev, J. Weinbub, T. Windbacher, and S. Selberherr. Modeling Spin-Based Devices in Silicon. In Proceedings of the 16th International Workshop on Computational Electronics (IWCE), pages 70–71, Nara, Japan, 2013.
[16] T. Windbacher, H. Mahmoudi, A. Makarov, V. Sverdlov, and S. Selberherr. Multiple Purpose Spin Transfer Torque Operated Devices. Facta Universitatis, 36(3):227–238, 2013.
[17] T. Windbacher, A. Makarov, H. Mahmoudi, V. Sverdlov, and S. Selberherr. Novel Bias-Field-Free Large Gain Spin-Transfer Oscillator. In Abstract Book of 58th Annual Conference of Magnetism and Magnetic Materials (MMM), pages 456–457, Denver, CO, USA, 2013.
[18] T. Windbacher, O. Triebl, D. Osintsev, A. Makarov, V. Sverdlov, and S. Selberherr. Simulation Study of an Electrically Read- and Writable Magnetic Logic Gate. Microelectronic Engineering, 112:188–192, 2013.
[19] T. Windbacher, O. Triebl, D. Osintsev, A. Makarov, V. Sverdlov, and S. Selberherr. Switching Optimization of an Electrically Read- and Writable Magnetic Logic Gate. In Proceedings of the 16th International Workshop on Computational Electronics (IWCE), pages 238–239, Nara, Japan, 2013.
[20] A. Makarov, S. Selberherr, and V. Sverdlov. Emerging Non-Volatile Memories for Ultra-Low Power Applications. In Tagungsband zur Informationstagung Mikroelektronik 12, pages 21–24, Vienna, Austria, 2012.
[21] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Fast Switching in Magnetic Tunnel Junctions with Two Pinned Layers: Micromagnetic Modeling. IEEE Transactions on Magnetics, 48(4):1289–1292, 2012.
[22] A. Makarov, V. Sverdlov, and S. Selberherr. Emerging Memory Technologies: Trends, Challenges, and Modeling Methods. Microelectronics Reliability, 52(4):628–634, 2012.
[23] A. Makarov, V. Sverdlov, and S. Selberherr. Geometry Dependence of the Switching Time in MTJs with a Composite Free Layer. In Abstracts Workshop on Innovative Devices and Systems (WINDS), page 21, Kohala Coast, Hawaii, USA, 2012.
[24] A. Makarov, V. Sverdlov, and S. Selberherr. High Thermal Stability and Low Switching Energy Barrier in Spin-Transfer Torque RAM with Composite Free Layer. In Extended Abstracts of 2012 International Conference on Solid State Devices and Materials (SSDM), Kyoto, Japan, 2012.
[25] A. Makarov, V. Sverdlov, and S. Selberherr. Micromagnetic Simulations of an MTJ with a Composite Free Layer for High-Speed Spin Transfer Torque RAM. In Proceedings of the 15th International Workshop on Computational Electronics (IWCE), pages 225–226, Madison, WI, USA, 2012.
[26] A. Makarov, V. Sverdlov, and S. Selberherr. Modeling Emerging Non-Volatile Memories: Current Trends and Challenges. In Physics Procedia, pages 99–104, Macao, China, 2012.
[27] A. Makarov, V. Sverdlov, and S. Selberherr. MTJs with a Composite Free Layer for High-Speed Spin Transfer Torque RAM: Micromagnetic Simulations. In The 15th International Workshop on Computational Electronics, pages 1–4. IEEE Xplore, 2012.
[28] A. Makarov, V. Sverdlov, and S. Selberherr. New Trends in Microelectronics: Towards an Ultimate Memory Concept. In Proceedings of the 8th International Caribbean Conference on Devices, Circuits and Systems, Playa del Carmen, Mexico, 2012.
[29] A. Makarov, V. Sverdlov, and S. Selberherr. New Trends in Microelectronics: Towards an Ultimate Memory Concept. In The 8th International Caribbean Conference on Devices, Circuits and Systems, pages 1–4. IEEE Xplore, 2012.
[30] A. Makarov, V. Sverdlov, and S. Selberherr. Recent Developments in Advanced Memory Modeling. In Proceedings of the 28th International Conference on Microelectronics, pages 49–52, Nis, Serbia, 2012.
[31] A. Makarov, V. Sverdlov, and S. Selberherr. Reduction of the Switching Current in Spin Transfer Torque Random Access Memory. In Abstracts Advanced Research Workshop on Future Trends in Microelectronics: Into the Cross Currents, page 49, Corsica, France, 2012.
[32] A. Makarov, V. Sverdlov, and S. Selberherr. STT-RAM with a Composite Free Layer: High Thermal Stability, Low Switching Barrier, and Sharp Switching Time Distribution. In Abstract of Worldwide Universities Network 4th International Conference on Spintronics (WUN-SPIN), page H4, Sydney, Australia, 2012.
[33] A. Makarov, V. Sverdlov, and S. Selberherr. Study of Self-Accelerating Switching in MTJs with Composite Free Layer by Micromagnetic Simulations. In Proceedings of the 17th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 229–232, Denver, CO, USA, 2012.
[34] D. Osintsev, A. Makarov, V. Sverdlov, and S. Selberherr. Efficient Simulations of the Transport Properties of Spin Field-Effect Transistors Built on Silicon Fins. In I. Lirkov, S. Margenov, and J. Wasniewski, editors, Lecture Notes in Computer Science, Vol. 7116, pages 630–637. Springer, 2012.
[35] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Surface Roughness Induced Spin Scattering and Relaxation in Silicon SOI MOSFETs. In Abstract of Worldwide Universities Network 4th International Conference on Spintronics (WUN-SPIN), page B3, Sydney, Australia, 2012.
[36] D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, and S. Selberherr. Temperature Dependence of the Transport Properties of Spin Field-Effect Transistors Built with InAs and Si Channels. Solid-State Electronics, 71:25–29, 2012.
[37] V. Sverdlov, A. Makarov, and S. Selberherr. Fast Switching in MTJs with a Composite Free Layer. In Abstracts of BIT’s 2nd Annual World Congress of Nanoscience and Nanotechnology 2012, page 291, Qingdao, China, 2012.
[38] V. Sverdlov, A. Makarov, and S. Selberherr. Switching Energy Barrier and Current Reduction in MTJs with Composite Free Layer. In Bulletin American Physical Society (APS March Meeting 2012), Boston, MA, USA, 2012.
[39] J. Weinbub, K. Rupp, L. Filipovic, A. Makarov, and S. Selberherr. Towards a Free Open Source Process and Device Simulation Framework. In Proceedings of the 15th International Workshop on Computational Electronics (IWCE), pages 141–142, Madison, WI, USA, 2012.
[40] J. Weinbub, K. Rupp, L. Filipovic, A. Makarov, and S. Selberherr. Towards a Free Open Source Process and Device Simulation Framework. In The 15th International Workshop on Computational Electronics, pages 1–4. IEEE Xplore, 2012.
[41] T. Windbacher, A. Makarov, V. Sverdlov, and S. Selberherr. Simulations of an Electrical Read-Write Operation of a Magnetic XOR Gate. In Abstract of Worldwide Universities Network 4th International Conference on Spintronics (WUN-SPIN), page J3, Sydney, Australia, 2012.
[42] T. Windbacher, D. Osintsev, A. Makarov, V. Sverdlov, and S. Selberherr. Fully Electrically Read- Write Magneto Logic Gates. In Book of Abstracts: The 5th International Conference on Micro-Nanoelectronics, Nanotechnologies & MEMS, Crete, Greece, 2012.
[43] A. Makarov, S. Selberherr, and V. Sverdlov. Modeling of Advanced Memories. In Proceedings of the Conference on Electron Devices and Solid-State Circuits (EDSSC), Tianjin, China, 2011.
[44] A. Makarov, V. Sverdlov, D. Kryzhanovsky, M. Girkin, and S. Selberherr. Modeling of Non-Volatile Memory Cells of RRAM Type on High Performance Computer Systems with the Monte-Carlo Method. In Book of Abstracts: Parallel Computing Technologies (PaVT), Moscow, Russian Federation, 2011.
[45] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. About the Switching Process in Magnetic Tunnel Junctions with Two Fixed Layers and One Soft Magnetic Layer. In Abstracts Book of The 20th International Conference on Soft Magnetic Materials (SMM), page 444, Kos, Greece, 2011.
[46] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Fast Switching in Magnetic Tunnel Junctions with Double Barrier Layer. In Extended Abstracts of 2011 International Conference on Solid State Devices and Materials (SSDM), Nagoya, Japan, 2011.
[47] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Micromagnetic Modeling of Penta-Layer Magnetic Tunnel Junctions with a Composite Soft Layer. In Abstracts of Advanced Workshop on Spin and Charge Properties of Low Dimensional Systems, Brasov, Romania, 2011.
[48] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Modeling of the Switching Process in Multi-Layered Magnetic Tunnel Junctions. In Proceedings of International School and Conference on Spintronics and Quantum Information Technology (SPINTECH), page 238, Matsue, Japan, 2011.
[49] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Optimization of the Penta-Layer Magnetic Tunnel Junction for Fast STTRAM Switching. In Abstracts International Symposium on Advanced Nanostructures and Nano-Devices (ISANN), Kaanapali, Hawaii, USA, 2011.
[50] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Reduction of Switching Time in Pentalayer Magnetic Tunnel Junctions with a Composite-Free Layer. Physica Status Solidi - Rapid Research Letters, 5(12):420–422, 2011.
[51] A. Makarov, V. Sverdlov, D. Osintsev, and S. Selberherr. Switching Time and Current Reduction Using a Composite Free Layer in Magnetic Tunnel Junctions. In Proceedings of the International Semiconductor Device Research Symposium (ISDRS), Washington DC, USA, 2011.
[52] A. Makarov, V. Sverdlov, D. Osintsev, J. Weinbub, and S. Selberherr. Modeling of the Advanced Spin Transfer Torque Memory: Macro- and Micromagnetic Simulations. In Proceedings of the 25th European Simulation and Modelling Conference (ESM), pages 177–181, Guimaraes, Portugal, 2011.
[53] A. Makarov, V. Sverdlov, and S. Selberherr. Modeling of the SET and RESET Process in Bipolar Resistive Oxide-Based Memory Using Monte Carlo Simulations. In I. Dimov, S. Dimova, and N. T. Kolkovska, editors, Lecture Notes in Computer Science, Vol. 6046, pages 87–94. Springer, 2011.
[54] A. Makarov, V. Sverdlov, and S. Selberherr. Stochastic Model of the Resistive Switching Mechanism in Bipolar Resistive Random Access Memory: Monte Carlo Simulations. Journal of Vacuum Science & Technology B, 29(1):01AD03–1–01AD03–5, 2011.
[55] D. Osintsev, A. Makarov, S. Selberherr, and V. Sverdlov. An InAs-Based Spin Field-Effect Transistor: A Path to Room Temperature Operation. In Abstracts International Symposium on Advanced Nanostructures and Nano-Devices (ISANN), Kaanapali, Hawaii, USA, 2011.
[56] D. Osintsev, A. Makarov, V. Sverdlov, and S. Selberherr. Transport Modeling in Spin Field-Effect Transistors Built on Silicon Fins. In Abstracts International Conference on Large-Scale Scientific Computations, page 64, Sozopol, Bulgaria, 2011.
[57] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Ballistic Transport in Spin Field-Effect Transistors Built on Si and InAs. In Proceedings of International School and Conference on Spintronics and Quantum Information Technology (SPINTECH), page 229, Matsue, Japan, 2011.
[58] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Ballistic Transport in Spin Field-Effect Transistors Built on Silicon. In Abstracts of Advanced Workshop on Spin and Charge Properties of Low Dimensional Systems, Brasov, Romania, 2011.
[59] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Ballistic Transport Properties of Spin Field-Effect Transistors Built on Silicon and InAs Fins. In ECS Transactions, pages 155–162, Joao Pessoa, Brazil, 2011.
[60] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Properties of InAs- and Silicon-Based Ballistic Spin Field-Effect Transistors Operated at Elevated Temperature. In Proceedings of the International Semiconductor Device Research Symposium (ISDRS), Washington DC, USA, 2011.
[61] D. Osintsev, V. Sverdlov, A. Makarov, and S. Selberherr. Properties of InAs- and Silicon-Based Ballistic Spin Field-Effect Transistors. In Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices, pages 59–62, Osaka, Japan, 2011.
[62] D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, and S. Selberherr. Ballistic Spin Field-Effect Transistors Built on Silicon Fins. In Conference Proceedings of the VII Workshop of the Thematic Network on Silicon-On-Insulator Technology, Devices and Circuits, pages 59–60, Granada, Spain, 2011.
[63] D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, and S. Selberherr. Transport Properties of Spin Field-Effect Transistors Built on Si and InAs. In Proceedings of the 12th International Conference on Ultimate Integration on Silicon (ULIS), pages 210–213, Cork, Ireland, 2011.
[64] D. Osintsev, V. Sverdlov, Z. Stanojevic, A. Makarov, J. Weinbub, and S. Selberherr. Properties of Silicon Ballistic Spin Fin-Based Field-Effect Transistors. In 219th ECS Meeting, pages 277–282, Montreal, Canada, 2011.
[65] A. Makarov, V. Sverdlov, and S. Selberherr. A Monte Carlo Simulation of Reproducible Hysteresis in RRAM. In Proceedings of the 14th International Workshop on Computational Electronics (IWCE), pages 35–38, Pisa, Italy, 2010.
[66] A. Makarov, V. Sverdlov, and S. Selberherr. A Stochastic Model of Bipolar Resistive Switching in Metal-Oxide-Based Memory. In Proceedings of the 40th European Solid-State Device Research Conference (ESSDERC), pages 396–399, Sevilla, Spain, 2010.
[67] A. Makarov, V. Sverdlov, and S. Selberherr. Modeling of Resistive Switching in RRAM Using Monte Carlo Simulations. In Book of Abstracts: Workshop on Dielectrics in Microelectronics (WODIM), page 141, Bratislava, Slovakia, 2010.
[68] A. Makarov, V. Sverdlov, and S. Selberherr. Modelling of the SET and RESET Process in Bipolar Resistive Oxide-Based Memory Using Monte Carlo Simulations. In Abstracts of the International Conference on Numerical Methods and Applications (NM&A), pages B–39, Borovets, Bulgaria, 2010.
[69] A. Makarov, V. Sverdlov, and S. Selberherr. Monte Carlo Simulation of Bipolar Resistive Switching Memories. In Proceedings of the Nanoelectronics Days 2010, page 22, Aachen, Germany, 2010.
[70] A. Makarov, V. Sverdlov, and S. Selberherr. Stochastic Modeling Hysteresis and Resistive Switching in Bipolar Oxide-Based Memory. In Proceedings of the 15th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 237–240, Bologna, Italy, 2010.
[71] A. Makarov, V. Sverdlov, and S. Selberherr. Stochastic Modeling of Bipolar Resistive Switching in Metal-Oxide Based Memory by Monte Carlo Technique. Journal of Computational Electronics, 9(3-4):146–152, 2010.
[72] A. Makarov, V. Sverdlov, and S. Selberherr. Stochastic Modeling of the Resistive Switching Mechanism in Oxide-Based Memory. In Proceedings of the 17th International Symposium on the Physics & Failure Analysis of Integrated Circuits (IPFA), pages 309–312, Singapore, 2010.
[73] A. Makarov, J. Weinbub, V. Sverdlov, and S. Selberherr. First-Principles Modeling of Bipolar Resistive Switching in Metal-Oxide Based Memory. In Proceedings of the 24th European Simulation and Modelling Conference (ESM), pages 181–186, Hasselt, Belgium, 2010.