Bibliography

[1]   S. C. Lee, F. Banit, M. Woerner, and A. Wacker, “Quantum Mechanical Wavepacket Transport in Quantum Cascade Laser Structures,” Phys. Rev. B, vol. 73, no. 24, p. 245320, 2006.

[2]   C. Pfluegl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, “High-temperature Performance of GaAs-based Bound-to-continuum Quantum-cascade Lasers,” Appl. Phys. Lett., vol. 83, no. 23, p. 4698, 2003.

[3]   M. Nobile, P. Klang, E. Mujagic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum Cascade Laser utilising Aluminium-free Material System: InGaAs/GaAsSb Lattice-matched to InP,” Electron. Lett., vol. 45, no. 20, p. 1031, 2009.

[4]   H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagic, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband Optoelectronics in the InGaAs/GaAsSb Material System,” J. Vac. Sci. Technol. B, vol. 28, no. 3, p. C3G19, 2010.

[5]   L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM J.Res.Dev., vol. 14, no. 1, p. 61, 1970.

[6]   R. F. Kazarinov and R. A. Suris, “Possibility of the Amplification of Electromagnetic Waves in a Semiconductor with a Superlattice,” Sov. Phys. Semicond., vol. 5, no. 4, p. 707, 1971.

[7]   C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent Progress in Quantum Cascade Lasers and Applications,” Rep. Prog. Phys., vol. 64, p. 1533, 2001.

[8]   J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, vol. 264, no. 5158, p. 553, 1994.

[9]   C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “GaAs/AlGaAs Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 73, no. 24, p. 3486, 1998.

[10]   C. Sirtori, H. Page, and C. Becker, “GaAs-based Quantum Cascade Lasers,” Phil. Trans. R. Soc. Lond. A, vol. 359, p. 505, 2001.

[11]   P. J. Douglas, “Si/SiGe Heterostructures: From Material and Physics to Devices and Circuits,” Semicond. Sci. Technol., vol. 19, no. 10, p. R75, 2004.

[12]   A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode Surface-plasmon Laser,” Appl. Phys. Lett., vol. 76, no. 16, p. 2164, 2000.

[13]   J. Faist, “Continuous-wave, Room-temperature Quantum Cascade Lasers,” Optics and Photonics News, vol. 17, no. 5, p. 32, 2006.

[14]   A. A. Kosterev, F. K. Tittel, W. Durante, M. Allen, R. Koehler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Detection of Biogenic CO Production above Vascular Cell Cultures using a Near-room-temperature QC-DFB Laser,” Appl. Phys. B: Lasers Opt., vol. 74, no. 1, p. 95, 2002.

[15]   R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum Cascade Lasers in Chemical Physics,” Chem. Phys. Lett., vol. 487, no. 1-3, p. 1, 2010.

[16]   C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron., vol. 34, no. 9, p. 1722, 1998.

[17]   Q. K. Yang and A. Z. Li, “Calculation of Spontaneous Emission and Gain Spectra for Quantum Cascade Lasers,” J. Phys.: Condens. Matter, vol. 12, no. 8, p. 1907, 2000.

[18]   J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High Power Mid-infrared (λ ~ 5μm) Quantum Cascade Lasers operating above Room Temperature,” Appl. Phys. Lett., vol. 68, no. 26, p. 3680, 1996.

[19]   C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long Wavelength Infrared (λ ~ 5μm) Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 69, no. 19, p. 2810, 1996.

[20]   J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed Feedback Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 70, no. 20, p. 2670, 1997.

[21]   G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-power Infrared (8-micrometer Wavelength) Superlattice Lasers,” Science, vol. 276, no. 5313, p. 773, 1997.

[22]   C. Sirtori, P. Kruck, S. Barbieri, H. Page, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “Low-loss Al-free Waveguides for Unipolar Semiconductor Lasers,” Appl. Phys. Lett., vol. 75, no. 25, p. 3911, 1999.

[23]   H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K Operation of a GaAs-based Quantum-cascade Laser at λ 9μm,” Appl. Phys. Lett., vol. 78, no. 22, p. 3529, 2001.

[24]   S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature Emission of GaAs/AlGaAs Superlattice Quantum-cascade Lasers at λ 12.6μm,” Appl. Phys. Lett., vol. 80, no. 11, p. 1864, 2002.

[25]   G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, “Terahertz Bound-to-continuum Quantum-cascade Lasers based on Optical-phonon Scattering Extraction,” Appl. Phys. Lett., vol. 86, no. 18, p. 181101, 2005.

[26]   H. Page, S. Dhillon, M. Calligaro, C. Becker, V. Ortiz, and C. Sirtori, “Improved CW Operation of GaAs-based QC Lasers: Tmax = 150 K,” IEEE J. Quantum Electron., vol. 40, no. 6, p. 665, 2004.

[27]   R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared Surface-plasmon Quantum-cascade Lasers at 21.5 μm and 24 μm Wavelengths,” Appl. Phys. Lett., vol. 78, no. 18, p. 2620, 2001.

[28]   M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M.Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-infrared Semiconductor Laser at Room Temperature,” Science, vol. 295, no. 5553, p. 301, 2002.

[29]   R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz Semiconductor-heterostructure Laser,” Nature, vol. 417, p. 156, 2002.

[30]   R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband Tuning of External Cavity Bound-to-continuum Quantum-cascade Lasers,” Appl. Phys. Lett., vol. 84, no. 10, p. 1659, 2004.

[31]   M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, C. Kumar, and N. Patel, “Sub-parts-per-billion Level Detection of NO2 using Room Temperature Quantum-cascade Lasers,” in Proc. Natl. Acad. Sci. USA, p. 10846, 2006.

[32]   N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer Spoof Surface Plasmon Structures Collimate Terahertz Laser Beams,” Nature Materials, vol. 9, no. 9, p. 730, 2010.

[33]   A. Mueller and J. Faist, “Ready for Take-off,” Nature Photonics, vol. 4, p. 291, 2010.

[34]   B. Lendl, M. Brandstetter, A. Genner, and W. Ritter, “Quantum Cascade Laser for Quantitative Analysis in Liquid Phase,” in Proc. of the 38th FACSS Conference, 2011.

[35]   M. George and J. Calladine, “Nanosecond Time-resolved IR Spectroscopy in Conventional and Supercritical Fluids Using External Cavity Quantum Cascade Lasers,” in Proc. of the 38th FACSS Conference, 2011.

[36]   A. Erlich, “Mid-infrared Absorption Spectroscopy using Quantum Cascade Lasers,” in Proc. of the 38th FACSS Conference, 2011.

[37]   F. Capasso, Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics, 1990.

[38]   J. M. Luttinger and W. Kohn, “Motion of Electrons and Holes in Perturbed Periodic Fields,” Phys. Rev., vol. 97, no. 4, p. 869, 1955.

[39]   M. G. Burt, “The Justification for Applying the Effective-mass Approximation to Microstructures,” J. Phys.: Condens. Matter, vol. 4, no. 32, p. 6651, 1992.

[40]   J. H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, 1998.

[41]   B. J. BenDaniel and C. B. Duke, “Space-charge Effects on Electron Tunneling,” Phys. Rev., vol. 152, no. 2, p. 683, 1966.

[42]   G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction. Springer, 2001.

[43]   S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer Verlag, 1984.

[44]   S. L. Chuang, Physics of Optoelectronic Devices. Wiley Interscience, 1995.

[45]   E. J. Roan and S. L. Chuang, “Linear and Nonlinear Intersubband Electroabsorptions in a Modulation-doped Quantum Well,” J. Appl. Phys., vol. 69, no. 5, p. 3249, 1991.

[46]   A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration Scheme for the Solution of the Two-dimensional Schrdinger-Poisson Equations in Quantum Structures,” J. Appl. Phys., vol. 81, no. 12, p. 7880, 1997.

[47]   X. Gao, D. Botez, and I. Knezevic, “Phonon Confinement and Electron Transport in GaAs-based Quantum Cascade Structures,” J. Appl. Phys., vol. 103, no. 7, p. 073101, 2008.

[48]   H.-C. Kaiser, H. Neidhardt, and J. Rehberg, “Density and Current of a Dissipative Schrödinger Operator,” J. Math. Phys., vol. 43, no. 11, p. 5325, 2002.

[49]   J. D. Bondurant and S. A. Fulling, “The Dirichlet-to-Robin Transform,” J. Phys. A: Math. Gen., vol. 38, no. 7, p. 1505, 2005.

[50]   G. Milovanovic, O. Baumgartner, and H. Kosina, “On Open Boundary Conditions for Quantum Cascade Structures,” Optical and Quantum Electronics, vol. 41, no. 11, p. 921, 2009.

[51]   N. B. Abdallah, P. Degond, and P. A. Markowich, “On a One-dimensional Schrödinger-Poisson Scattering Model,” ZAMP, vol. 48, no. 1, p. 135, 2005.

[52]   E. Pozdeeva and A. Schulze-Halberg, “Trace Formula for Green’s Functions of Effective Mass Schrödinger Equations and Nth-order Darboux Transformations,” Int. J. Mod. Phys. A, vol. 23, no. 16-17, p. 2635, 2008.

[53]   L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics. Benjamin, New York, 1962.

[54]   S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1997.

[55]   S. Datta, Quantum Transport: Atom to Transistor. Cambridge University Press, 2005.

[56]   S. Datta, “The Non-equilibrium Green’s Function (NEGF) Formalism: An Elementary Introduction,” in Proc. Digest. International Electron Devices Meeting IEDM ’02, p. 703, 2002.

[57]   S. Datta, “Nanoscale Device Modeling: The Green’s Function Method,” Superlattices & Microstructures, vol. 28, no. 4, p. 253, 2000.

[58]   R. C. Iotti and F. Rossi, “Nature of Charge Transport in Quantum-cascade Lasers,” Phys. Rev. Lett., vol. 87, no. 14, p. 146603, 2001.

[59]   S. Mukamel, Principles of Nonlinear Optical Spectroscopy. Oxford University Press, 1995.

[60]   M. F. Lensink, J. Mavri, and H. J. C. Berendsen, “Simultaneous Integration of Mixed Quantum-classical Systems by Density Matrix Evolution Equations using Interaction Representation and Adaptive Time Step Integrator,” J. Comp. Chem., vol. 17, no. 11, p. 1287, 1995.

[61]   V. K. Thankappan, Quantum Mechanics. New Age International Ltd., 2003.

[62]   K. Blum, Density Matrix Theory and Applications. Plenum Press, 1996.

[63]   U. Fano, “Description of States in Quantum Mechanics by Density Matrix and Operator Techniques,” Rev. Mod. Phys., vol. 29, no. 1, p. 74, 1957.

[64]   W. H. Loisell, Quantum Statistical Properties of Radiation. Wiley, New York, 1973.

[65]   M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics. Addison-Wesley, New York, 1974.

[66]   K. Blum and H. Kleinpoppen, “Electron-photon Angular Correlation in Atomic Physics,” Phys. Rep., vol. 52, no. 4, p. 203, 1979.

[67]   H. Haken, Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology. Springer, New York, 1983.

[68]   M. Lundstrom, Fundamentals of Carrier Transport. Cambridge University Press (New York), 2000.

[69]   C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, 1996.

[70]   H. Callebaut and Q. Hu, “Importance of Coherence for Electron Transport in Terahertz Quantum Cascade Lasers,” J. Appl. Phys., vol. 98, no. 10, p. 104505, 2005.

[71]   L. V. Hove, “Quantum-mechanical Perturbations giving Rise to a Statistical Transport Equation,” Physica, vol. XXI, p. 517, 1955.

[72]   M. V. Fischetti, “Theory of Electron Transport in Small Semiconductor Devices using the Pauli Master Equation,” J. Appl. Phys., vol. 83, no. 1, p. 270, 1998.

[73]   R. P. Zaccaria, R. C. Iotti, and F. Rossi, “Monte Carlo Simulation of Hot-carrier Phenomena in Open Quantum Devices: A Kinetic Approach,” Appl. Phys. Lett., vol. 84, no. 1, p. 139, 2004.

[74]   M. V. Fischetti, “Master-equation Approach to the Study of Electronic Transport in Small Semiconductor Devices,” Phys. Rev. B, vol. 59, no. 7, p. 4901, 1999.

[75]   W. R. Frensley, “Boundary Conditions for Open Quantum Systems Driven far from Equilibrium,” Rev. Mod. Phys., vol. 62, no. 3, p. 745, 1990.

[76]   U. Weiss, Quantum Dissipative Systems. World Scientific, 2008.

[77]   R. C. Iotti, E. Ciancio, and F. Rossi, “Quantum Transport Theory for Semiconductor Nanostructures: A Density-matrix Formulation,” Phys. Rev. B, vol. 72, no. 12, p. 125347, 2005.

[78]   R. C. Iotti and F. Rossi, “Microscopic Theory of Semiconductor-based Optoelectronic Devices,” Rep. Prog. Phys., vol. 68, no. 11, p. 2533, 2005.

[79]   R. W. Hockney and J. W. Eastwood, Computer Simulation using Particles. Taylor & Francis, 1988.

[80]   M. Akarsu and O. Özbas, “Monte Carlo Simulation for Electron Dynamics in Semiconductor Devices,” Math. and Comp. Appl., vol. 10, no. 1, p. 19, 2005.

[81]   C. Jacoboni and L. Reggiani, “The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,” Rev. Mod. Phys., vol. 55, no. 3, p. 645, 1983.

[82]   J. M. Ziman, Principle of the Theory of Solids. Cambridge University Press, 1972.

[83]   M. Hartig, S. Haacke, and B. Deveaud, “Femtosecond Luminescence Measurements of the Intersubband Scattering Rate in AlGaAs/GaAs Quantum Wells under Selective Excitation,” Phys. Rev. B, vol. 54, no. 20, p. R14269, 1996.

[84]   H. Fröhlich, “Theory of Electrical Breakdown in Ionic Crystal,” Proceedings of the Royal Society, vol. A160, p. 230, 1937.

[85]   K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices. Artech House, 1993.

[86]   G. Mahan, Many-particle Physics. Plenum, New York, 1990.

[87]   N. Bannov, V. Aristov, V. Mitin, and M. A. Stroscio, “Electron Relaxation Times due to the Deformation-potential Interaction of Electrons with Confined Acoustic Phonons in a Free-standing Quantum Well,” Phys. Rev. B, vol. 51, no. 15, p. 9930, 1995.

[88]   O. E. Raichev, “Phonon-assisted Γ-X Transfer in (001)-grown GaAs/AlAs Superlattices,” Phys. Rev. B, vol. 49, no. 8, p. 5448, 1994.

[89]   U. Penner, H. Rücker, and I. N. Yassievich, “Theory of Interface Roughness Scattering in Quantum Wells,” Semicond. Sci. Technol., vol. 13, no. 7, p. 709, 1998.

[90]   H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, “Interface Roughness Scattering in GaAs/AlAs Quantum Wells,” Appl. Phys. Lett., vol. 51, no. 23, p. 1934, 1987.

[91]   S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced Broadening of Intersubband Electroluminescence in p-SiGe and n-GaInAsAlInAs Quantum-cascade Structures,” Appl. Phys. Lett., vol. 86, no. 6, p. 062113, 2005.

[92]   T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband Absorption Linewidth in GaAs Quantum Wells due to Scattering by Interface Roughness, Phonons, Alloy Disorder, and Impurities,” J. Appl. Phys., vol. 93, no. 3, p. 1586, 2003.

[93]   G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures. Le editions de Physique, Les Ulis, France, 1990.

[94]   C. Jacoboni, Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions. Springer Series in Solid-State Sciences, 2010.

[95]   P. Harrison, “The Nature of the Electron Distribution Functions in Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 75, no. 18, p. 2800, 1999.

[96]   D. E. Aspnes, “GaAs Lower Conduction-band Minima: Ordering and Properties,” Phys. Rev. B, vol. 14, no. 12, p. 5331, 1976.

[97]   R. Tsu and L. Esaki, “Tunneling in a Finite Superlattice,” Appl.Phys. Lett., vol. 22, no. 11, p. 562, 1973.

[98]   P. Panchadhyayee, R. Biswas, A. Khan, and P. K. Mahapatra, “Current Density in Generalized Fibonacci Superlattices under a Uniform Electric Field,” J. Phys.: Condens. Matter, vol. 20, no. 27, p. 275243, 2008.

[99]   J. Arriaga and V. R. Velasco, “Electronic Properties of GaAsAlAs Fibonacci Superlattices,” J. Phys.: Condens. Matter, vol. 9, no. 38, p. 8031, 1997.

[100]   M. H. Tyc and W. Salejda, “Negative Differential Resistance in Aperiodic Semiconductor Superlattices,” Physica A, vol. 303, no. 3-4, p. 493, 2002.

[101]   B. Mendez and F. DominguezAdame, “Numerical Study of Electron Tunneling through Heterostructures,” Am. J. Phys., vol. 62, no. 2, p. 143, 1994.

[102]   B. Gelmont, V. Gorfinkel, and S. Luryi, “Theory of the Spectral Line Shape and Gain in Quantum Wells with Intersubband Transitions,” Appl. Phys. Lett., vol. 68, no. 16, p. 2171, 1996.

[103]   W. S. C. Chang, Principles of Lasers and Optics. Cambridge University Press, 2002.

[104]   H. Willenberg, G. H. Doehler, and J. Faist, “Intersubband Gain in a Bloch Oscillator and Quantum Cascade Laser,” Phys. Rev. B, vol. 67, no. 8, p. 085315, 2003.

[105]   C. Y. L. Cheung, P. Rees, K. A. Shore, and I. Pierce, “Self-consistent Optical Gain and Threshold Current Calculations for Near Infrared Intersubband Semiconductor Lasers,” J. Mod. Optics, vol. 47, no. 11, p. 1857, 2000.

[106]   V. B. Gorfinkel, S. Luryi, and B. Gelmont, “Theory of Gain Spectra for Quantum Cascade Lasers and Temperature Dependence of their Characteristics at Low and Moderate Carrier Concentrations,” IEEE J. Quant. Electron, vol. 32, no. 11, p. 1995, 1996.

[107]   S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9THz Quantum Cascade Lasers Operating up to 70K in Continuous Wave,” Appl. Phys. Lett., vol. 85, no. 10, p. 1674, 2004.

[108]   J. Kroell, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved Measurements of Stimulated Emission in a Laser,” Nature, vol. 449, p. 698, 2007.

[109]   R. A. Coles, R. A. Abram, S. Brand, and M. G. Burt, “Dipole Matrix Elements and the Nature of Charge Oscillation under Coherent Interband Excitation in Quantum Wells,” Phys. Rev. B, vol. 60, no. 19, p. 13306, 1999.

[110]   A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of Doping on the Performance of Terahertz Quantum-cascade Lasers,” Appl. Phys. Lett., vol. 90, no. 10, p. 101107, 2007.

[111]   S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material Parameters for use in Research and Device Applications,” J. Appl. Phys., vol. 58, no. 3, p. R1, 1985.

[112]   O. Madelung, Semiconductors: Basic Data. Springer-Verlag, Berlin, 1996.

[113]   G. Milovanovic and H. Kosina, “A Semiclassical Transport Model for Quantum Cascade Lasers based on the Pauli Master Equation,” Journal of Computational Electronics, vol. 9, no. 3, p. 211, 2010.

[114]   P. K. Basu, “Effect of Interface Roughness on Excitonic Linewidth in a Quantum Well: Golden-rule and Self-consistent-Born-approximation Calculations,” Phys. Rev. B, vol. 44, no. 16, p. 8798, 1991.

[115]   S. Rihani, H. Page, H. E. Beere, D. A. Ritchie, and M. Pepper, “Design and Simulation of a THz QCL based on Γ-X Depopulation Mechanism,” Physica E, vol. 41, no. 7, p. 1240, 2009.

[116]   S. R. Schmidt, E. A. Zibik, A. Seilmeier, L. E. Vorobjev, A. E. Zhukov, and U. M. Ustinov, “Observation of Intersubband Real-space Transfer in GaAs/AlAs Quantum-well Structures due to ΓX Mixing,” Appl. Phys. Lett., vol. 78, no. 9, p. 1261, 2001.

[117]   J. J. Finley, R. J. Teissier, M. S. Skolnick, J. W. Cockburn, G. A. Roberts, R. Grey, G. Hill, M. A. Pate, and R. Planel, “Role of the X Minimum in Transport through AlAs Single-barrier Structures,” Phys. Rev. B, vol. 58, no. 16, p. 10619, 1998.

[118]   G. Milovanovic, O. Baumgartner, and H. Kosina, “Design of a MIR QCL based on Intervalley Electron Transfer: A Monte Carlo Approach,” in Proceedings of the 10th International Conference on Mid-Infrared Optoelectronics: Materials and Devices, p. 140, 2010.

[119]   M. Ohkubo, T. Ijichi, A. Iketani, and T. Kikuta, “Aluminium Free InGaAs/GaAs/InGaAsP/InGaP GRINSCH SL-SQW Lasers at 0.98 μm,” Electron. Lett., vol. 28, no. 12, p. 1149, 1992.

[120]   S. L. Yellen, A. H. Shepard, C. M. Harding, J. A. Baumann, R. G. Waters, D. Z. Garbuzov, V. Pjataev, V. Kochergin, and P. S. Zory, “Dark-line-resistant, Aluminium-free Diode Laser at 0.8 μm,” IEEE Photonics Technol. Lett., vol. 4, no. 12, p. 1328, 1992.

[121]   J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, “Type II Photoluminescence and Conduction Band Offsets of GaAsSb/InGaAs and GaAsSb/InP Heterostructures grown by Metalorganic Vapor Phase Epitaxy,” Appl. Phys. Lett., vol. 73, no. 19, p. 2799, 1998.

[122]   M. Nobile, H. Detz, E. Mujagic, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Midinfrared Intersubband Absorption in InGaAs/GaAsSb Multiple Quantum Wells,” Appl. Phys. Lett., vol. 95, no. 4, p. 041102, 2009.

[123]   P. Devlin, H. M. Heravi, and J. C. Woolley, “Electron Effective Mass Values in GaAsx Sb1x Alloys,” Can. J. Phys., vol. 59, no. 7, p. 939, 1981.

[124]   S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. Wiley, 2009.

[125]   S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. Wiley-VCH, 2004.

[126]   S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information. Kluwer Academic Publishers, 1999.

[127]   S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties. World Scientific, 1994.

[128]   S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons, 2005.

[129]   I. Vurgaftman, J. R. Meyer, and L. R. Rahm-Mohan, “Band Parameters for III-V Compound Semiconductors and their Alloys,” J. Appl. Phys., vol. 89, no. 11, p. 5815, 2001.

[130]   O. Bonno, J. Thobel, and F. Dessenne, “Modeling of Electronelectron Scattering in Monte Carlo Simulation of Quantum Cascade Lasers,” J. Appl. Phys., vol. 97, no. 4, p. 043702, 2005.