next up previous contents
Next: Constants Up: List of Symbols Previous: List of Symbols

Notation

$ x$ ... Scalar
$ \vec{x}$ ... Vector
$ \vec{e}_x$ ... Unity vector in direction x
$ \vec{e}_n$ ... Unity vector in direction of vector $ \vec{n}$
$ \vec{x} \cdot \vec{y}$ ... Scalar (in) product
$ \vec{x} \times \vec{y}$ ... Cross product
$ \frac{\partial (\cdot)}{\partial t}$ ... Partial derivative with respect to $ t$
$ \ensuremath{{\mathbf{\nabla}}}$ ... Nabla operator
$ \ensuremath{{\mathbf{\nabla}}}\vec{x}$ ... Gradient of $ \vec{x}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \vec{x}$ ... Divergence of $ \vec{x}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \ensuremath{{\mathbf{\nabla}}}= \ensuremath{{\mathbf{\nabla}}}^2$ ... LAPLACE operator
$ \langle\cdot\rangle$ ... Statistical average
$ f(\vec{r},\vec{k},t)$ ... Distribution function
$ \mathcal{F} , \mathcal{F}^{-1}$ ... FOURIER transform and inverse FOURIER transform respectively
$ J_n(\cdot)$ ... BESSEL function of nth order


next up previous contents
Next: Constants Up: List of Symbols Previous: List of Symbols

R. Minixhofer: Integrating Technology Simulation into the Semiconductor Manufacturing Environment