5.2.1 Specific Heat Capacity

The specific heat capacity $ \ensuremath{c_{\mathrm{L}}}$ enters the heat flux equation as a time independent model parameter and is defined as the energy per mass needed to increase the temperature of a specimen by one Kelvin. It is modeled by [209]

$\displaystyle \ensuremath{c_{\mathrm{L}}}(\ensuremath{T_{\mathrm{L}}}) = \ensur...
...{K}}\right)}^{\ensuremath{\alpha_{c}}}+ c_1/\ensuremath{c_{\mathrm{L,300}}}}\,,$ (5.13)

where $ \ensuremath{c_{\mathrm{L,300}}}$ is the specific heat capacity at $ \ensuremath{T_{\mathrm{L}}}= 300\,\ensuremath{\mathrm{K}}$ . Fig. 5.2 shows the temperature dependence of the specific heat capacities for PbTe and SnTe, respectively. Measurement data have been obtained from [210,174,211,121,212] for lead telluride and from [213,214] for tin telluride, where the latter is a review of several collected papers. For the ternary alloys Pb$ _{1-x}$ Sn$ _x$ Te, the resulting specific heat capacity is expressed as a linear interpolation between the values for the according pure materials

$\displaystyle \ensuremath{c_{\mathrm{L}}}^{\ensuremath{\mathrm{AB}}} = (1-x) \e...
...math{\mathrm{A}}} + x \ensuremath{c_{\mathrm{L}}}^{\ensuremath{\mathrm{B}}} \,,$ (5.14)

where A stands for lead telluride, B for tin telluride and $ x$ denotes the according atomistic content.


Table 5.5: Parameters for the specific heat capacity models for PbTe and SnTe.
  PbTe SnTe
$ \ensuremath{c_{\mathrm{L,300}}}$ $ 156\,\mathrm{J/kg K}$ $ 197.3\,\mathrm{J/kg K}$
$ c_1$ $ 9.5\,\mathrm{J/kg K}$ $ 115\,\mathrm{J/kg K}$
$ {\ensuremath{\alpha_{c}}}$ 1.15 0.63


Figure 5.2: Temperature dependence of the specific heat capacity of lead telluride and tin telluride including measurement data and model parameter sets.
\includegraphics[width=10cm]{figures/materials/PbTe/spec_heat2.eps}

M. Wagner: Simulation of Thermoelectric Devices