next up previous contents
Next: 5.2 Three-Dimensional Vector Finite Up: 5.1 Edge Elements Applications Previous: 5.1.2 Equations for the   Contents


5.1.3 Quasi-Magnetostatics

If the characteristic lengths of the analyzed structures are much smaller than the considered wave lengths and for conducting areas $ \epsilon / \gamma \ll T$ , the displacement current can be neglected [40,69]. $ T$ is the characteristic period of the time change rate. In this case the Maxwell equations (4.1) to (4.4) can be simplified and the so called dominant magnetic field model is achieved:

  $\displaystyle \vec{\nabla}\times\vec{E} = -\mu\partial_t\vec{H}$ (5.11)
  $\displaystyle \vec{\nabla}\cdot\vec{B} = 0$ (5.12)
  $\displaystyle \vec{\nabla}\times\vec{H} = \vec{J}.$ (5.13)

After transforming (5.13)

$\displaystyle \vec{\nabla}\times\vec{H} = \vec{J} = \gamma\vec{E} \Rightarrow \frac{1}{\gamma}\vec{\nabla}\times\vec{H} = \vec{E}$ (5.14)

the rotor operator is applied and the right hand side is substituted by (5.11)

$\displaystyle \vec{\nabla}\times\left(\frac{1}{\gamma}\vec{\nabla}\times\vec{H}\right) = \vec{\nabla}\times\vec{E} = -\partial_t\vec{B} = -\mu\partial_t\vec{H}.$ (5.15)

Thus, in the frequency domain the quasi-magnetostatic case is described by the following partial differential equation for the magnetic field $ \vec{H}$

$\displaystyle \vec{\nabla}\times\left(\frac{1}{\gamma}\vec{\nabla}\times\vec{H}\right) + \jmath\omega\mu\vec{H} = \vec{0}.$ (5.16)


next up previous contents
Next: 5.2 Three-Dimensional Vector Finite Up: 5.1 Edge Elements Applications Previous: 5.1.2 Equations for the   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements