next up previous contents
Next: Own Publications Up: Dissertation Alexandre Nentchev Previous: C.2.2 For the Vector   Contents

Bibliography

1
Ansoft. Simulation software for high-performance electronic design.
http://www.ansoft.com.

2
COMSOL. The unifying multiphysics simulation environment.
http://www.comsol.com.

3
CST. Comlete technology for 3D electromagnetic simulation.
http://www.cst.com.

4
Magwel.
http://www.magwel.com.

5
Remcom.
http://www.remcom.com.

6
Synopsys. Helping you design the chip inside.
http://www.synopsys.com.

7
R. B. Iverson and Y. L. LeCoz.
A floating random-walk method for efficient RC extraction of complex IC-interconnect structures.
In Technical Proceedings of the 1998 Int. Conf. on Modeling and Simulation of Microsystems, pages 117 - 121, 1998.

8
K. Chatterjee and J. Poggie.
A parallelized 3D floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation.
Progress In Electromagnetics Research, PIER 57, pages 237-252, 2006.

9
R. Bauer.
Numerische Berechnung von Kapazitäten in dreidimensionalen Verdrahtungsstrukturen.
Dissertation, Technische Universität Wien, 1994.

10
R. Sabelka.
Dreidimensionale finite Elemente Simulation von Verdrahtungsstrukturen auf integrierten Schaltungen.
Dissertation, Technische Universität Wien, 2001.

11
Ch. Harlander.
Numerische Berechnung von Induktivitäten in dreidimensionalen Verdrahtungsstrukturen.
Dissertation, Technische Universität Wien, 2002.

12
W. Wessner.
Mesh refinement techniques for TCAD tools.
Dissertation, Technische Universität Wien, 2006.

13
H. J. Dirschmid.
Mathematische Grundlagen der Elektrotechnik.
Vieweg, Braunschweig;Wiesbaden, 1988.

14
S. J. Farlow.
Partial Differential Equations for Scientists and Engineers.
Dover Publications, September 1993.

15
P. DuChateau and D. Zachmann.
Applied Partial Differential Equations.
Dover Publications, February 2002.

16
Ch. Lang and N. Pucker.
Mathematische Methoden in der Physik.
Spektrum Akademischer Verlag, August 2005.

17
S. Selberherr.
Analysis and Simulation of Semiconductor Devices.
Springer, Januar 1984.

18
O. C. Zienkiewicz and R. L. Taylor.
The Finite Element Method for Solid and Structural Mechanics.
Butterworth-Heinemann, September 2005.

19
K.-J. Bathe.
Finite-Elemente-Methoden.
Springer, 1990.

20
C. Johnson.
Numerical Solution of Partial Differential Equations by the Finite Element Method.
Cambridge University Press, 1987.

21
O.C. Zienkiewicz and R.L. Taylor.
The Finite Element Method.
Butterworth-Heinemann, 2000.

22
P. Knabner and L. Angermann.
Numerik partieller Differentialgleichungen: Eine anwendungsorientierte Einführung.
Springer, May 2000.

23
Ch. Grossmann, H.-G. Roos, and M. Stynes.
Numerical Treatment of Partial Differential Equations.
Springer, November 2007.

24
S. Larsson and V. Thomée.
Partial Differential Equations with Numerical Methods.
Springer, December 2005.

25
P. P. Silvester and R. L. Ferrari.
Finite Elements for Electrical Engineers.
Cambridge University Press, September 1996.

26
R.E. White.
An Introduction to the Finite Element Method with Applications to Nonlinear Problems.
John Wiley & Sons, New York, 1985.

27
J.L. Volakis, A. Chatterjee, and L.C. Kempel.
Finite Element Method for Electromagnetics.
IEEE Press, New York, 1998.

28
T. R. Chandrupatla and A. D. Belegundu.
Introduction to Finite Elements in Engineering.
Prentice Hall, 2002.

29
R.I. Mackie.
Object-Oriented Methods and Finite Element Analysis.
Saxe-Coburg Publications, 2001.

30
M. Salazar-Palma, T. K. Sarkar, L. E. Garcia-Castillo, and T. Roy.
Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling.
Artech House, 1998.

31
I. Babuska and T. Strouboulis.
The Finite Element Method and its Reliability.
Oxford University Press, 2001.

32
I. Babuska, J. Chandra, and J.E. Flaherty.
Adaptive Computational Methods for Partial Differential Equations.
SIAM, Philadelphia, 1983.

33
S. C. Brenner and L. R. Scott.
The Mathematical Theory of Finite Element Methods.
Springer, April 2002.

34
K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom.
The Finite Element Method for Engineers.
Wiley-Interscience, September 2001.

35
A. Kost.
Numerische Methoden in der Berechnung elektromagnetischer Felder.
Springer, Berlin, Februar 2007.

36
Ch. Großman and H.-G. Roos.
Numerische Bechandlung partieller Differentialgleichungen.
Teubner, Wiesbaden, 2005.

37
L. Badea and P. Daripa.
A domain embedding/boundary control method to solve elliptic problems in arbitrary domains.
In Proceedings of the 41st IEEE Conference on Decision and Control, volume 3, pages 3004 - 3009, December 2002.

38
J. Jin.
The Finite Element Method in Electromagnetics.
John Wiley and Sons, New York, 2002.

39
H. Haas.
Numerische Berechnung elektromagnetischer Felder.
Institut für Grundlagen und Theorie der Elektrotechnik, TU Wien, 2004.

40
A. Prechtl.
Vorlesungen über Theoretische Elektrotechnik.
Institut für Grundlagen und Theorie der Elektrotechnik, TU Wien, 1996.
Zweiter Teil: Elektrodynamik.

41
J. C. Maxwell.
A Treatise on Electricity and Magnetism.
Oxford University Press, 1998.

42
J. C. Maxwell.
An Elementary Treatise on Electricity: Second Edition.
Dover Publ. Inc., 2004.

43
S. É. Umanskii and I. A. Duvidzon.
Automatic subdivision of an arbitrary two-dimensional region into finite elements.
Strength of Materials, 9(6):739-744, June 1977.

44
I. A. Duvidzon and S. M. Begelman.
Formation of a finite-element grid for an arbitrary two-dimensional region.
Strength of Materials, 21(12):1734-1739, December 1989.

45
K. Kpogli and A. Kost.
Local error estimation and strategic mesh generation for time-dependent problems in electromagnetics coupled with heat conduction.
IEEE Trans. Magnetics, 39(3):1701 - 1704, May 2003.

46
S. Alfonzetti.
Finite-element mesh adaptation of 2-D time-harmonic skin effect problems.
In IEEE Trans. Magnetics, volume 36, pages 1592 - 1595, July 2000.

47
S. Dufour, G. Vinsard, B. Laporte, and R. Moretti.
Mesh improvement in 2-D eddy-current problems.
In IEEE Trans. Magnetics, volume 38, pages 377 - 380, March 2002.

48
H. R. Schwarz.
Methode der finiten Elemente.
Teubner, January 1991.

49
M. V. K. Chari and Peter P. Silvester.
Finite Elements in Electrical and Magnetic Field Problems.
J. Wiley & Sons, New York, April 1980.

50
K. Küpfmüller, W. Mathis, and A. Reibiger.
Theoretische Elektrotechnik.
Springer, Berlin, 2006.

51
O. P. Gupta.
Finite and Boundary Element Methods in Engineering.
A.A. Balkema, Juli 1999.

52
G. Beer and J. O. Watson.
Introduction to Finite and Boundary Element Methods for Engineers.
John Wiley and Sons, November 1992.

53
D. Poljak and C. A. Brebbia.
Boundary Element Methods For Electrical Engineers.
WIT Press, August 2005.

54
H. T. Yu, S. L. Ho, M. Q. Hu, and H. C. Wong.
Edge-based FEM-BEM for wide-band electromagnetic computation.
IEEE Trans. Magnetics, 42(4):771 - 774, April 2006.

55
J. P. Webb.
Edge elements and what they can do for you.
IEEE Trans. Magnetics, 29(2):1460 - 1465, March 1993.

56
N. Takahashi, T. Nakata, K. Fujiwara, and T. Imai.
Investigation of effectiveness of edge elements.
IEEE Trans. Magnetics, 28(2):1619 - 1622, March 1992.

57
G. Mur.
The fallacy of edge elements.
IEEE Trans. Magnetics, 34(5):3244 - 3247, September 1998.

58
A. Taflove.
Computational Electrodynamics.
Artech House, Boston, 1995.

59
A. Taflove, editor.
Advances in Computational Electrodynamics.
Artech House, Boston, 1998.

60
J. Schwinger, L.L. DeRaad Jr., K.A. Milton, and W. Tsai.
Classical Electrodynamics.
Perseus Books, 1998.

61
R.C. Dorf, editor.
The Electrical Engineering Handbook.
CRC Press, 1997.

62
J. van Bladel.
Electromagnetic Fields.
Springer, 1985.

63
I. D. Mayergoyz.
Nonlinear Diffusion of Electromagnetic Fields: With Applications to Eddy Currents and Superconductivity.
Academic Press Inc., U.S., May 1998.

64
H. Haas.
Analytische Berechnung elektromagnetischer Felder.
Institut für Grundlagen und Theorie der Elektrotechnik, TU Wien, 1998.

65
A. Prechtl.
Vorlesungen über die Grundlagen der Elektrotechnik I.
Springer, Wien, January 1999.

66
A. Prechtl.
Vorlesungen über die Grundlagen der Elektrotechnik II.
Springer, Wien, November 2007.

67
P. Meuris, W. Schoenmaker, and W. Magnus.
Strategy for electromagnetic interconnect modeling.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 20(6):753-762, June 2001.

68
W. Schoenmaker and P. Meuris.
Electromagnetic interconnects and passives modeling: Software implementation issues.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 21(5):534-543, May 2002.

69
Roland Süße.
Theoretische Grundlagen der Elektrotechnik 2.
Teubner, 2006.

70
R. Albanese and G. Rubinacci.
Solution of three dimensional eddy current problems by integral and differential methods.
IEEE Trans. Magnetics, 24(1):98 - 101, January 1988.

71
T. Nakata, N. Takahashi, K. Fujiwara, and Y. Okada.
Improvements of the T-$ \Omega$ method for 3-D eddy current analysis.
IEEE Trans. Magnetics, 24(1):94 - 97, January 1988.

72
O. Biro and K. Preis.
Generating source field functions with limited support for edge finite-element eddy current analysis.
IEEE Trans. Magnetics, 43(4):1165 - 1168, April 2007.

73
T. Nakata, N. Takahashi, K. Fujiwara, T. Imai, and K. Muramatsu.
Comparison of various methods of analysis and finite elements in 3-D magnetic field analysis.
IEEE Trans. Magnetics, 27(5):4073 - 4076, September 1991.

74
J. P. Webb and B. Forghani.
DC current distributions and magnetic fields using the T-Omega edge-element method.
IEEE Trans. Magnetics, 31(3):1444 - 1447, May 1995.

75
T. Nakata, N. Takahashi, K. Fujiwara, and K. Muramatsu.
Investigation of effectiveness of various methods with different unknown variables for 3-D eddy current analysis.
IEEE Trans. Magnetics, 26(2):442 - 445, March 1990.

76
T. Nakata, N. Takahashi, K. Fujiwara, and Y. Shiraki.
Comparison of different finite elements for 3-D eddy current analysis.
IEEE Trans. Magnetics, 26(2):434 - 437, March 1990.

77
B. Boualem and F. Piriou.
Hybrid formulation A-$ \Omega$ with finite element method to model in 3D electromagnetic systems.
IEEE Trans. Magnetics, 32(3):59 - 662, May 1996.

78
J. Wang and B. Tong.
Calculation of 3D eddy current problems using a modified T-$ \Omega$ method.
IEEE Trans. Magnetics, 24(1):114 - 117, January 1988.

79
J. P. Webb and B. Forghani.
The low-frequency performance of H-$ \phi$ and T-$ \Omega$ methods using edge elements for 3D eddy current problems.
IEEE Trans. Magnetics, 29(6):2461 - 2463, November 1993.

80
F. Bouillault, Z. Ren, and A. Razek.
Calculation of 3D eddy current problems by an hybrid T-$ \Omega$ method.
IEEE Trans. Magnetics, 26(2):478 - 481, March 1990.

81
K. Iwata and H. Hirano.
Magnetic field analysis by edge elements of magnetic components considering inhomogeneous current distribution within conductor windings.
IEEE Trans. Magnetics, 42(5):1549 - 1554, May 2006.

82
Z. Ren.
T-$ \Omega$ formulation for eddy-current problems in multiply connected regions.
IEEE Trans. Magnetics, 38(2):557 - 560, March 2002.

83
A. T. Phung, O. Chadebec, P. Labie, Y. Le Floch, and G. Meunier.
Automatic cuts for magnetic scalar potential formulations.
IEEE Trans. Magnetics, 41(5):1668 - 1671, May 2005.

84
J. Simkin, S. C. Taylor, and E. X. Xu.
An efficient algorithm for cutting multiply connected regions.
IEEE Trans. Magnetics, 40(2):707 - 709, March 2004.

85
P. R. Kotiuga.
Toward an algorithm to make cuts for magnetic scalar potentials in finite element meshes.
Journal of Applied Physics, 63:3357-3359, April 1988.

86
J. M. Zhou, K. D. Zhou, and K. R. Shao.
Automatic generation of 3D meshes for complicated solids.
IEEE Trans. Magnetics, 28(2):1759 - 1762, March 1992.

87
P. L. George, F. Hecht, and E. Saltel.
Automatic 3D mesh generation with prescribed meshed boundaries.
IEEE Trans. Magnetics, 26(2):771 - 774, March 1990.

88
N. A. Golias and T. D. Tsiboukis.
Three-dimensional automatic adaptive mesh generation.
IEEE Trans. Magnetics, 28(2):1700 - 1703, March 1992.

89
D. Dyck, D. A. Lowther, W. Mai, and G. Henneberger.
Three-dimensional mesh improvement using self organizing feature maps.
IEEE Trans. Magnetics, 35(3):1334 - 1337, May 1999.

90
D. Korichi, B. Bandelier, and F. Rioux-Damidau.
Adaptive 3D mesh refinement based on a two fields formulation of magnetodynamics.
IEEE Trans. Magnetics, 36(4):1496 - 1500, July 2000.

91
M. Dorica and D. Giannacopoulos.
Impact of mesh quality improvement systems on the accuracy of adaptive finite-element electromagnetics with tetrahedra.
IEEE Trans. Magnetics, 41(5):1692-1695, May 2005.

92
S. Alfonzetti.
A neural network generator for tetrahedral meshes.
IEEE Trans. Magnetics, 39(3):1650 - 1653, May 2003.

93
D. Q. Ren and D. D. Giannacopoulos.
Parallel mesh refinement for 3-D finite element electromagnetics with tetrahedra: Strategies for optimizing system communication.
IEEE Trans. Magnetics, 42(4):1251 - 1254, April 2006.

94
D. D. Giannacopoulos and D. Q. Ren.
Analysis and design of parallel 3-D mesh refinement dynamic load balancing algorithms for finite element electromagnetics with tetrahedra.
IEEE Trans. Magnetics, 42(4):1235 - 1238, April 2006.

95
L. Freitag and C. Ollivier-Gooch.
A comparison of tetrahedral mesh improvement techniques.
In Proceedings of the Fifth International Meshing Roundtable, pages 87-100, Sandia National Laboratories, 1996.

96
L. Freitag and C. Ollivier-Gooch.
Tetrahedral mesh improvement using swapping and smoothing.
Int. J. for Numerical Methods in Eng., 40(21):3979-4002, 1997.

97
I. Babuska and A. K. Aziz.
On the angle condition in the finite element method.
SIAM J. on Numerical Analysis, 13(2):214-226, April 1976.

98
I. Fried.
Condition of finite element matrices generated from nonuniform meshes.
AIAA Journal, 10:219-221, April 1972.

99
K. Forsman and L. Kettunen.
Tetrahedral mesh generation in convex primitives by maximizing solid angles.
IEEE Trans. Magnetics, 30(5):3535 - 3538, September 1994.

100
Alain Bossavit.
Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism.
IEE Proceedings, 135, Part A(8):493-500, November 1988.

101
H. Whitney.
Geometric Integration Theory.
Princeton, NJ:Princeton University Press, 1957.

102
H. Kaden.
Wirbelströme und Schirmungen in der Nachrichtentechnik.
Springer, 1959.

103
J. D. Jackson.
Classical Electrodynamics.
Wiley and Sons, January 1999.

104
Y. Cao, X. Huang, D. Sylvester, T.-J. King, and C. Hu.
Impact of on-chip interconnect frequency-dependent R(f)L(f) on digital and RF design.
In IEEE Int. ASIC-SoC Conference, September 2002.

105
A. Nieuwoudt and Y. Massoud.
Variability-aware multilevel integrated spiral inductor synthesis.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 25(12):2613-2625, December 2006.

106
F. Y. Huang, J. X. Lu, D. M. Jiang, X. C. Wang, and N. Jiang.
A novel analytical approach to parameter extraction for on-chip spiral inductors taking into account high-order parasitic effect.
Solid-State Electronics, 50(9-10):1557-1562, September-October 2006.

107
P. Fleischmann and S. Selberherr.
A new approach to fully unstructured three-dimensional Delaunay mesh generation with improved element quality.
In Simulation of Semiconductor Processes and Devices, pages 129-130, 1996.

108
P. Fleischmann, R. Sabelka, A. Stach, R. Strasser, and S. Selberherr.
Grid generation for three-dimensional process and device simulation.
In Simulation of Semiconductor Processes and Devices, pages 161-166, 1996.

109
R. Sabelka and S. Selberherr.
SAP -- A program package for three-dimensional interconnect simulation.
In Proc. Intl. Interconnect Technology Conference, pages 250-252, Burlingame, California, June 1998.

110
J. Schöberl.
NETGEN -- automatic mesh generator.
http://www.hpfem.jku.at/netgen/index.html.

111
J. Schöberl.
Netgen - An advancing front 2D/3D-mesh generator based on abstract rules.
Computing and Visualization in Science, 1(1):41-52, July 1997.

112
H. Borouchaki and S. H. Lo.
Fast Delaunay triangulation in three dimensions.
Computer methods in applied mechanics and engineering, 128(1):153-167, December 1995.

113
Y. Zhan, R. Harjani, and S. Sapatnekar.
On the selection of on-chip inductors for the optimal VCO design.
In Custom Integrated Circuits Conference, pages 277-280, Oct. 2004.

114
W. Schroeder, K. Martin, and B. Lorensen.
The Visualization Toolkit.
Kitware, Inc., USA, 2004.

115
Kitware.
The VTK User's Guide.
Kitware, Inc., USA, 2004.

116
N. Thepayasuwan and A. Doboli.
Layout conscious bus architecture synthesis for deep submicron systems on chip.
In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, volume 1, pages 108-113, Feb. 2004.

117
I. Koren, Z. Koren, and D. K. Pradhan.
Designing interconnection buses in VLSI and WSI for maximum yield and minimum delay.
IEEE J. Solid-State Circuits, 23(3):859 - 866, Jun 1988.

118
R. Sabelka, C. Harlander, and S. Selberherr.
The state of the art in interconnect simulation.
In Simulation of Semiconductor Processes and Devices, pages 6-11, 2000.

119
R. Sabelka and S. Selberherr.
A finite element simulator for three-dimensional analysis of interconnect structures.
Microelectronics J., 32(12):163-171, Jan 2001.

120
R. Bauer and S. Selberherr.
Preconditioned CG-solvers and finite element grids.
In Proceedings Colorado Conference on Iterative Methods, volume 2, pages 1-5, Breckenridge, USA, April 1994.

121
J. R. Shewchuk.
An introduction to the conjugate gradient method without the agonizing pain.
http://www.cs.cmu.edu/~jrs/jrspapers.html, Aug 1994.

122
S. C. Eisenstat.
Efficient implementation of a class of preconditioned conjugate gradient methods.
SIAM J.Sci.Stat.Comput., 2(1):1 - 4, 1981.

123
T. A. Manteuffel.
The shifted incomplete Cholesky factorization.
In Proceedings of the Symposium on Sparse Matrix Computation, pages 41-61, Knoxville, TN, November 1978.

124
J. R. Shewchuk.
Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator.
In WACG: 1st Workshop on Applied Computational Geometry: Towards Geometric Engineering, WACG, pages 124-133. LNCS, May 1996.




A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements