next up previous contents
Next: Bibliography Up: C.2 Neumann Boundary for Previous: C.2.1 For the Scalar   Contents


C.2.2 For the Vector Function

For the vector functions $ \vec{H}_1$ the Neumann boundary term (5.31) is given by

$\displaystyle \int_{\mathcal{A}_{N2}}\lambda_i\vec{n}\cdot(\utilde{\mu}\cdot\ve...
...2}}\lambda_i \vec{n}\cdot(\utilde{\mu}\cdot\vec{N}_j) \mathrm{d}A = [D]\{c\}.$ (C.35)

Assuming that $ \mu$ is a constant scalar in each element the corresponding element matrix is given by

$\displaystyle D_{ij}^e = \mu\int_{\mathcal{A}^e_k}\lambda^e_i \vec{n}_k\cdot\vec{N}^e_j \mathrm{d}A, k\in[1;4], i\in[1;4], j\in[1;6].$ (C.36)

For the face $ \mathcal{A}^e_1$ opposite to the node $ 1$ ($ k = 1$ ):

The element function $ \lambda^e_1$ is 0 on the element face $ \mathcal{A}^e_1$ . Thus the first row of the element matrix is zero.

$\displaystyle D_{1j}^e = \mu\int_{\mathcal{A}^e_1}\lambda^e_1 \vec{n}_1\cdot\vec{N}^e_j \mathrm{d}A = 0.$ (C.37)

The remaining entries can be calculated as follows

\begin{displaymath}\begin{split}D_{21}^e & = \mu\int_{\mathcal{A}^e_1}\lambda^e_...
...\nabla}\lambda^e_1 = \frac{\mu{}l_1}{72V_e} f_{11} \end{split}\end{displaymath} (C.38)

\begin{displaymath}\begin{split}D_{22}^e & = \mu\int_{\mathcal{A}^e_1}\lambda^e_...
...nabla}\lambda^e_1 = \frac{\mu{}l_2}{144V_e} f_{11} \end{split}\end{displaymath} (C.39)

$\displaystyle D_{23}^e = \frac{\mu{}l_3}{144V_e} f_{11}$ (C.40)

\begin{displaymath}\begin{split}D^e_{24} & = \mu\int_{\mathcal{A}^e_1}\lambda^e_...
...\right] = \frac{\mu{}l_4}{144V_e}(f_{12} - 2f_{13}) \end{split}\end{displaymath} (C.41)

$\displaystyle D^e_{25} = \frac{\mu{}l_5}{144V_e}(2f_{14} - f_{12})$ (C.42)

$\displaystyle D^e_{26} = \frac{\mu{}l_6}{144V_e}(f_{13} - f_{14})$ (C.43)

\begin{displaymath}\begin{split}D^e_{31} & = \frac{\mu{}l_1}{144V_e}f_{11}   ...
...^e_{36} = \frac{\mu{}l_6}{144V_e}(f_{13} - 2f_{14}) \end{split}\end{displaymath} (C.44)

\begin{displaymath}\begin{split}D^e_{41} & = \frac{\mu{}l_1}{144V_e}f_{11}   ...
...e_{46} = \frac{\mu{}l_6}{144V_e}(2f_{13} - f_{14}). \end{split}\end{displaymath} (C.45)

For $ \mathcal{A}^e_2$ :

\begin{displaymath}\begin{split}D^e_{11} & = -\frac{\mu{}l_1}{72V_e}f_{22}   ...
...D^e_{16} = \frac{\mu{}l_6}{144V_e}(f_{23} - f_{24}) \end{split}\end{displaymath} (C.46)

$\displaystyle D^e_{2j} = 0, \j\in[1;6]$ (C.47)

\begin{displaymath}\begin{split}D^e_{31} & = -\frac{\mu{}l_1}{144V_e}f_{22}  \...
...^e_{36} = \frac{\mu{}l_6}{144V_e}(f_{23} - 2f_{24}) \end{split}\end{displaymath} (C.48)

\begin{displaymath}\begin{split}D^e_{41} & = -\frac{\mu{}l_1}{144V_e}f_{22}  \...
...e_{46} = \frac{\mu{}l_6}{144V_e}(2f_{23} - f_{24}). \end{split}\end{displaymath} (C.49)

For $ \mathcal{A}^e_3$ :

\begin{displaymath}\begin{split}D^e_{11} & = \frac{\mu{}l_1}{144V_e}(f_{31} - 2f...
...{32})   D^e_{16} = \frac{\mu{}l_5}{144V_e}f_{33} \end{split}\end{displaymath} (C.50)

\begin{displaymath}\begin{split}D^e_{21} & = \frac{\mu{}l_1}{144V_e}(2f_{31} - f...
...{32})   D^e_{26} = \frac{\mu{}l_5}{144V_e}f_{33} \end{split}\end{displaymath} (C.51)

$\displaystyle D^e_{3j} = 0, \j\in[1;6]$ (C.52)

\begin{displaymath}\begin{split}D^e_{41} & = \frac{\mu{}l_1}{144V_e}(f_{31} - f_...
...{32})   D^e_{46} = \frac{\mu{}l_5}{72V_e}f_{33}. \end{split}\end{displaymath} (C.53)

For $ \mathcal{A}^e_4$ :

\begin{displaymath}\begin{split}D^e_{11} & = \frac{\mu{}l_1}{144V_e}(f_{41} - 2f...
...     D^e_{16} = -\frac{\mu{}l_6}{144V_e}f_{44} \end{split}\end{displaymath} (C.54)

\begin{displaymath}\begin{split}D^e_{21} & = \frac{\mu{}l_1}{144V_e}(2f_{41} - f...
...   D^e_{26} = -\frac{\mu{}l_6}{144V_e}f_{44}   \end{split}\end{displaymath} (C.55)

\begin{displaymath}\begin{split}D^e_{31} & = \frac{\mu{}l_1}{144V_e}(f_{41} - f_...
...      D^e_{36} = -\frac{\mu{}l_6}{72V_e}f_{44} \end{split}\end{displaymath} (C.56)

$\displaystyle D^e_{4j} = 0, j\in[1;6].$ (C.57)


next up previous contents
Next: Bibliography Up: C.2 Neumann Boundary for Previous: C.2.1 For the Scalar   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements