next up previous contents
Next: B.2 Neumann Boundary for Up: B. Two-Dimensional Neumann Boundary Previous: B. Two-Dimensional Neumann Boundary   Contents


B.1 Neumann Boundary for the Rotor-Rotor-Operator

The Neumann boundary integral from (5.74) is modified to read

\begin{displaymath}\begin{split}\int_{\mathcal{C}_{N1}}\vec{n}\cdot \left[ \vec{...
...mathrm{d}s =  & = \left[D\right]\left\{c\right\}. \end{split}\end{displaymath} (B.1)

Three different cases for each of the three edges of every triangular element must be considered. $ \gamma$ is assumed to be a constant scalar in each element.

For the computation of the element matrix

\begin{displaymath}\begin{split}D_{ij}^e & = \int_{\mathcal{C}^e_{k}}\vec{n}_k\c...
... \right),   i\in[1;3],  j\in[1;3],  k\in[1;3] \end{split}\end{displaymath} (B.2)

the following expressions must be calculated

$\displaystyle \left(l_{23}\vec{n}_1\right)\times\vec{\nabla}\lambda^e_1 = -\left(l_{23}\vec{n}_1\right)\times\frac{l_{23}\vec{n}_1}{2F_e} = \vec{0}$ (B.3)

\begin{displaymath}\begin{split}\left(l_{23}\vec{n}_1\right)\times\vec{\nabla}\l...
...{31}\times\vec{r}_{23}\right)}_{-2F_e} = -\vec{e}_z \end{split}\end{displaymath} (B.4)

$\displaystyle \left(l_{23}\vec{n}_1\right)\times\vec{\nabla}\lambda^e_3 = \frac...
...\vec{e}_{z}\cdot\left(\vec{r}_{12}\times\vec{r}_{23}\right)}_{2F_e} = \vec{e}_z$ (B.5)

$\displaystyle \left(l_{31}\vec{n}_2\right)\times\vec{\nabla}\lambda^e_1 = \vec{...
...     \left(l_{31}\vec{n}_2\right)\times\vec{\nabla}\lambda^e_3 = -\vec{e}_z$ (B.6)

$\displaystyle \left(l_{12}\vec{n}_3\right)\times\vec{\nabla}\lambda^e_1 = -\vec...
...z      \left(l_{12}\vec{n}_3\right)\times\vec{\nabla}\lambda^e_3 = \vec{0}$ (B.7)

\begin{displaymath}\begin{split}\vec{\nabla}\times\vec{N}^e_1 & = 2l_{12} \left(...
...right)\right]}_{2F_e} = \frac{l_{12}}{F_e}\vec{e}_z \end{split}\end{displaymath} (B.8)

$\displaystyle \vec{\nabla}\times\vec{N}^e_2 = \frac{l_{23}}{F_e}\vec{e}_z$ (B.9)

$\displaystyle \vec{\nabla}\times\vec{N}^e_3 = \frac{l_{31}}{F_e}\vec{e}_z.$ (B.10)

Along Edge $ 12$ :

$\displaystyle \left. \begin{array}{l} \lambda^e_3 = 0  \lambda^e_2 = 1 - \lam...
...{r}_1 - \vec{r}_2)\lambda^e_1 + \vec{r}_2 = \vec{r}_{21}\lambda^e_1 + \vec{r}_2$ (B.11)

$\displaystyle s = \vec{r}\cdot\vec{e}_{21}  \Rightarrow  \mathrm{d}s = \vec{r}_{21}\cdot\vec{e}_{21} d\lambda^e_1 = l_{12} d\lambda^e_1$ (B.12)

or for $ \lambda^e_2$

$\displaystyle \left. \begin{array}{l} \lambda^e_3 = 0  \lambda^e_1 = 1 - \lam...
...{r}_2 - \vec{r}_1)\lambda^e_2 + \vec{r}_1 = \vec{r}_{12}\lambda^e_2 + \vec{r}_2$ (B.13)

$\displaystyle s = \vec{r}\cdot\vec{e}_{12}  \Rightarrow  \mathrm{d}s = \vec{r}_{12}\cdot\vec{e}_{12} d\lambda^e_2 = l_{12} d\lambda^e_2$ (B.14)

\begin{displaymath}\begin{split}D_{ij}^e & = \frac{1}{\gamma}\int_{\mathcal{C}^e...
...mes\vec{N}^e_j \right),   i\in[1;3],  j\in[1;3] \end{split}\end{displaymath} (B.15)

\begin{displaymath}\begin{split}\int_{\mathcal{C}^e_{12}}\left(\vec{n}_3\times\v...
...^e_2 d\lambda^e_2\right\} =  & = l_{12}\vec{e}_z \end{split}\end{displaymath} (B.16)

\begin{displaymath}\begin{split}\int_{\mathcal{C}^e_{12}}\left(\vec{n}_3\times\v...
...mbda^e_3 \mathrm{d}s}_{0}\right\} =  & = \vec{0} \end{split}\end{displaymath} (B.17)

\begin{displaymath}\begin{split}\int_{\mathcal{C}^e_{12}}\left(\vec{n}_3\times\v...
...1\lambda^e_1 d\lambda^e_1\right\} =  & = \vec{0} \end{split}\end{displaymath} (B.18)

$\displaystyle \left[D\right]^e = \frac{1}{\gamma{} F_e} \left[ \begin{array}{c...
...2} & l_{12}l_{23} & l_{12}l_{31}  0 & 0 & 0  0 & 0 & 0 \end{array} \right].$ (B.19)

Analogously the element matrices for the remaining edges are obtained.

Along Edge $ 23$ :

$\displaystyle \left[D\right]^e = \frac{1}{\gamma{} F_e} \left[ \begin{array}{c...
... l_{23}l_{12} & l_{23}l_{23} & l_{23}l_{31}  0 & 0 & 0 \end{array} \right].$ (B.20)

Along Edge $ 31$ :

$\displaystyle \left[D\right]^e = \frac{1}{\gamma{} F_e} \left[ \begin{array}{c...
...& 0 & 0  l_{31}l_{12} & l_{31}l_{23} & l_{31}l_{31} \par \end{array} \right].$ (B.21)


next up previous contents
Next: B.2 Neumann Boundary for Up: B. Two-Dimensional Neumann Boundary Previous: B. Two-Dimensional Neumann Boundary   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements