next up previous contents
Next: C.2 Neumann Boundary for Up: C. Three-Dimensional Neumann Boundary Previous: C. Three-Dimensional Neumann Boundary   Contents


C.1 The Neumann Boundary for the Rotor-Rotor-Operator

The Neumann boundary integral (5.29) becomes

$\displaystyle \int_{\mathcal{A}_{N1}}\vec{n}\cdot\left[ \vec{N}_i\times\left( \...
...{1}{\gamma}\vec{\nabla}\times\vec{N}_j \right) \right] \mathrm{d}A = [D]\{c\}.$ (C.1)

The assembly of the matrix $ [D]$ with entries

$\displaystyle D_{ij} = \int_{\mathcal{A}_{N1}}\vec{n}\cdot\left[ \vec{N}_i\times\left( \frac{1}{\gamma}\vec{\nabla}\times\vec{N}_j \right) \right] \mathrm{d}A$ (C.2)

is performed element by element, whereby only the elements lying on the Neumann boundary are considered. The elements are tetrahedra and in each element $ \vec{N}_i$ is represented by the vector edge functions (5.45) to (5.50).

The integral domain transformation for an arbitrary surface in the three-dimensional space is the same as in Appendix A and is derived in a similar manner. The integral is represented as a sum

$\displaystyle \lim_{max(A_i)\rightarrow{}0}\sum_if(\vec{r}_i)A_i = \int_{\mathcal{A}}f(\vec{r}) \mathrm{d}A.$ (C.3)

The surface $ \mathcal{A}$ is subdivided into pieces $ \mathcal{A}_i$ with areas $ A_i$ . $ \vec{r}_i$ is point inside $ \mathcal{A}_i$ . The transformation is given by

$\displaystyle \vec{r} = \vec{r}\left(x(\xi,\eta), y(\xi,\eta), z(\xi,\eta)\right).$ (C.4)

An area $ A_i$ is calculated as

\begin{displaymath}\begin{split}A_i & = \left\vert [\vec{r}(\xi+h,\eta) - \vec{r...
...\times\vec{r}_{\eta}(\xi,\eta)\right]hk\right\vert, \end{split}\end{displaymath} (C.5)

which leads again to (A.8) and (A.7).

Now the element matrix $ [D]^e$ can be computed. As there are four outer triangular faces on each tetrahedral element, there will be four different element matrices for each face which lies on the Neumann boundary

\begin{displaymath}\begin{split}D_{ij}^e & = \int_{\mathcal{A}^e_k}\vec{n}_k\cdo...
...ma}\vec{\nabla}\times\vec{N}^e_j\right), k\in[1;4] \end{split}\end{displaymath} (C.6)

and using (5.52)

$\displaystyle D_{ij}^e = \frac{1}{3\gamma V_e}\left(\vec{n}_k\times\int_{\math...
...ec{N}^e_i  \mathrm{d}A\right)\cdot\left(l_j \vec{r}_{7-j}\right), k\in[1;4].$ (C.7)

$ \mathcal{A}^e_k$ is the face opposite to the node $ k$ . $ \vec{n}_k$ is a constant vector with the characteristic length 1, perpendicular to $ \mathcal{A}^e_k$ and points outwards. $ \gamma$ is assumed to be constant in each element. Only the three $ \vec{N}^e_i$ functions for the edges in the $ \mathcal{A}^e_k$ plane are not perpendicular to $ A^e_k$ . The remaining three vector functions are perpendicular to $ A^e_k$ . Consequently these vectors are parallel to $ \vec{n}_k$ and the corresponding vector product $ \vec{n}_k\times\vec{N}^e_i$ becomes zero.

For the element face $ \mathcal{A}^e_1$ the element matrix is given as follows

$\displaystyle D_{1j}^e = D_{2j}^e = D_{3j}^e = 0$ (C.8)

$\displaystyle D_{4j}^e = \frac{1}{3\gamma V_e}\left(\vec{n}_1\times\int_{\math...
...ec{N}^e_4  \mathrm{d}A\right)\cdot\left(l_j \vec{r}_{7-j}\right), k\in[1;4].$ (C.9)

The integral is computed using the integral domain transformation discussed above.

$\displaystyle \int_{\mathcal{A}^e_1}\vec{N}^e_4 \mathrm{d}A = 2A_1\int_0^1\int...
...rac{l_4}{6} 2A_1\left(\vec{\nabla}\lambda^e_3 - \vec{\nabla}\lambda^e_2\right)$ (C.10)

\begin{displaymath}\begin{split}\vec{n}_1\times\int_{\mathcal{A}^e_1}\vec{N}^e_4...
... = \frac{l_4}{6}\left(\vec{r}_6 - \vec{r}_5\right). \end{split}\end{displaymath} (C.11)

Thus the final solution for the fourth edge ($ i=4$ ) is given by the expression

$\displaystyle D_{4j}^e = \frac{l_4 l_j}{18\gamma V_e}\left(\vec{r}_6 - \vec{r}_5\right)\cdot\vec{r}_{7-j}.$ (C.12)

The same procedure is used for remaining edges (with index $ i$ ):

$\displaystyle D_{5j}^e = \frac{l_4 l_j}{18\gamma V_e}\left(\vec{r}_4 - \vec{r}_6\right)\cdot\vec{r}_{7-j}$ (C.13)

$\displaystyle D_{6j}^e = \frac{l_4 l_j}{18\gamma V_e}\left(\vec{r}_5 - \vec{r}_4\right)\cdot\vec{r}_{7-j}.$ (C.14)

Analogously it is proceeded for the remaining faces.

For the face $ \mathcal{A}^e_2$ :

$\displaystyle D_{1j}^e = D_{4j}^e = D_{5j}^e = 0$ (C.15)

$\displaystyle D_{2j}^e = -\frac{l_2 l_j}{18\gamma V_e}\left(\vec{r}_6 + \vec{r}_3\right)\cdot\vec{r}_{7-j}$ (C.16)

$\displaystyle D_{3j}^e = \frac{l_3 l_j}{18\gamma V_e}\left(\vec{r}_2 - \vec{r}_6\right)\cdot\vec{r}_{7-j}$ (C.17)

$\displaystyle D_{6j}^e = \frac{l_6 l_j}{18\gamma V_e}\left(\vec{r}_2 + \vec{r}_3\right)\cdot\vec{r}_{7-j}.$ (C.18)

For the face $ \mathcal{A}^e_3$ :

$\displaystyle D_{2j}^e = D_{4j}^e = D_{6j}^e = 0$ (C.19)

$\displaystyle D_{1j}^e = \frac{l_1 l_j}{18\gamma V_e}\left(\vec{r}_3 - \vec{r}_5\right)\cdot\vec{r}_{7-j}$ (C.20)

$\displaystyle D_{3j}^e = -\frac{l_3 l_j}{18\gamma V_e}\left(\vec{r}_1 + \vec{r}_5\right)\cdot\vec{r}_{7-j}$ (C.21)

$\displaystyle D_{5j}^e = \frac{l_5 l_j}{18\gamma V_e}\left(\vec{r}_1 + \vec{r}_3\right)\cdot\vec{r}_{7-j}.$ (C.22)

For the face $ \mathcal{A}^e_4$ :

$\displaystyle D_{3j}^e = D_{5j}^e = D_{6j}^e = 0$ (C.23)

$\displaystyle D_{1j}^e = -\frac{l_1 l_j}{18\gamma V_e}\left(\vec{r}_2 + \vec{r}_4\right)\cdot\vec{r}_{7-j}$ (C.24)

$\displaystyle D_{2j}^e = \frac{l_2 l_j}{18\gamma V_e}\left(\vec{r}_1 - \vec{r}_4\right)\cdot\vec{r}_{7-j}$ (C.25)

$\displaystyle D_{4j}^e = \frac{l_4 l_j}{18\gamma V_e}\left(\vec{r}_1 + \vec{r}_2\right)\cdot\vec{r}_{7-j}.$ (C.26)


next up previous contents
Next: C.2 Neumann Boundary for Up: C. Three-Dimensional Neumann Boundary Previous: C. Three-Dimensional Neumann Boundary   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements