Next: List of Publications
Up: Dissertation R.L. de Orio
Previous: 6. Conclusion and Outlook
-
- 1
-
H. B. Huntington and A. R. Grone, ``Current-Induced Marker Motion in
Gold Wires,'' J. Phys. Chem. Solids, vol. 20, no. 1, pp. 76-87,
1961.
- 2
-
J. Noguchi, T. Oshima, T. Matsumoto, S. Uno, and K. Sato, ``Multilevel
Interconnect with Air-Gap Structure for Next-Generation
Interconnections,'' IEEE Trans. Electron. Dev., vol. 56, no. 11, pp.
2675-2682, 2009.
- 3
-
J. R. Lloyd, J. Clemens, and R. Snede, ``Copper Metallization
Reliability,'' Microelectron. Reliab., vol. 39, pp. 1595-1602,
1999.
- 4
-
C. K. Hu and J. M. E. Harper, ``Copper Interconnections and
Reliability,'' Mater. Chem. Phys., vol. 52, pp. 5-16, 1998.
- 5
-
International Technology Roadmap for Semiconductors, 2010.
- 6
-
P. R. Justison, ``Analysis of Electromigration in Single- and
Dual-Inlaid Cu Interconnects,'' Dissertation, The University of
Texas at Austin, 2003.
- 7
-
F. L. Wei, C. L. Gan, T. L. Tan, C. S. Hau-Riege, A. P. Marathe, J. J. Vlassak,
and C. V. Thompson, ``Electromigration-Induced Extrusion Failures in
Cu/Low-k Interconnects,'' J. Appl. Phys., vol. 104, p. 023529,
2008.
- 8
-
L. M. Gignac, C.-K. Hu, and E. G. Liniger, ``Correlation of
Electromigration Lifetime Distribution to Failure Mode in
Dual-Damascene Cu/SiLK Interconnects,'' Microelectron.
Eng., vol. 70, pp. 398-405, 2003.
- 9
-
T. Matrieb, P. A. Flinn, J. C. Bravman, D. Gardner, and M. C. Madden,
``Observations of Electromigration Induced Void Nucleation and
Growth in Polycristalline and Near-Bamboo Passivated Al
Lines,'' J. Appl. Phys., vol. 78, no. 2, pp. 1026-1032, 1995.
- 10
-
Z. S. Choi, R. Mönig, and C. V. Thompson, ``Effects of Microstructure on
the Formation, Shape, and Motion of Voids during Electromigration
in Passivated Copper Interconnects,'' J. Mater. Res., vol. 23,
no. 2, pp. 383-391, 2008.
- 11
-
P. R. Besser, M. C. Madden, and P. A. Flinn, ``In Situ Scanning
Electron Microscopy Observation of the Dynamic Behavior of
Electromigration Voids in Passivated Aluminum Lines,'' J.
Appl. Phys., vol. 72, no. 8, pp. 3792-3797, 1992.
- 12
-
J. P. Gambino, T. C.Lee, F. Chen, and T. D. Sullivan, ``Reliability
Challenges for Advanced Copper Interconnects: Electromigration and
Time-Dependent Dielectric Breakdown (TDDB),'' Proc.
Intl. Symp. on the Physical and Failure Analysis of Integrated Circuits, pp.
677-684, 2009.
- 13
-
C.-K. Hu, L. M. Gignac, and R. Rosenberg, ``Electromigration of Cu/Low
Dielectric Constant Interconnects,'' Microelectron. Reliab.,
vol. 46, pp. 213-231, 2006.
- 14
-
C.-K. Hu, D. Canaperi, S. T. Chen, L. M. Gignac, B. Herbst, and S. Kaldor,
``Effects of Overlayers on Electromigration Reliability Improvement
for Cu/Low-k Interconnects,'' Proc. Intl. Reliability Physics
Symp., pp. 222-227, 2004.
- 15
-
O. Dubreuil, M. Cordeau, T. Mourier, P. Chausse, M. Mellier, D. Bellet, and
J. Torres, ``Characterization of Copper Grain Growth Limitations
Inside Narrow Wires Depending of Overburden Thickness,''
Microelectron. Eng., vol. 85, pp. 1988-1991, 2008.
- 16
-
B. Yao, T. Sun, V. Kumar, K. Barmak, and K. R. Coffey, ``Grain Growth and
Void Formation in Dielectric-Encapsulated Cu Thin Films,''
J. Mater. Res., vol. 23, no. 7, pp. 2033-2039, 2008.
- 17
-
G. C. Schwartz and K. V. Srikrishnan, ``Metallization,'' in Handbook of
Semiconductor Interconnection Technoogy, edited by G. C. Schwartz and
K. V. Srikrishnan, pp. 311-383, 2006.
- 18
-
C.-K. Hu, L. M. Gignac, B. Baker, E. G. Liniger, and R. Yu, ``Impact of Cu
Microstructure on Electromigration Reliability,'' Proc. Intl.
Interconnect Technology Conf., pp. 93-95, 2007.
- 19
-
A. von Glasow, ``Zuverlässigkeitsaspekte von Kupfermetallisierungen in
Integrierten Schaltungen,'' Dissertation, Technische Universität
München, 2005.
- 20
-
M. Hauschildt, ``Statistical Analysis of Electromigration Lifetimes and
Void Evolution in Cu Interconnects,'' Dissertation, The University
of Texas at Austin, 2005.
- 21
-
E. T. Ogawa, K.-D. Lee, V. A. Blaschke, and P. S. Ho, ``Electromigration
Reliability Issues in Dual-Damascene Cu Interconnections,''
IEEE Trans. on Reliability, vol. 51, no. 4, pp. 403-419, 2002.
- 22
-
M. Hauschildt, M. Gall, S. Thrasher, P. Justison, R. Hernandez, H. Kawasaki,
and P. S. Ho, ``Statistical Analysis of Electromigration Lifetimes
and Void Evolution,'' J. Appl. Phys., vol. 101, p. 043523, 2007.
- 23
-
J. Lloyd and J. Kitchin, ``The Electromigration Failure Distribution:
The Fine-Line Case,'' J. Appl. Phys., vol. 69, no. 4, pp.
2117-2127, 1991.
- 24
-
B. Li, C. Christiansen, J. Gill, R. Filippi, T. Sullivan, and E. Yashchin,
``Minimum Void Size and 3-Parameter Lognormal Distribution for
EM Failures in Cu Interconnects,'' Proc. Intl. Reliability
Physics Symp., pp. 115-122, 2006.
- 25
-
S. C. Lee and A. S. Oates, ``Identification and Analysis of Dominant
Electromigration Failure Modes in Copper/Low-k Dual-Damascene
Interconnects,'' Proc. Intl. Reliability Physics Symp., pp.
107-114, 2006.
- 26
-
M. W. Lane, E. G. Liniger, and J. R. Lloyd, ``Relationship Between
Interfacial Adhesion and Electromigration in Cu Metallization,''
J. Appl. Phys., vol. 93, no. 3, pp. 1417-1421, 2003.
- 27
-
M. Y. Yan, J. O. Suh, F. Ren, K. N. Tu, A. V. Vairagar, S. G. Mhaisalkar, and
A. Krishnamoorthy, ``Effect of CuSn Coatings on
Electromigration Lifetime Improvement of Cu Dual-Damascene
Interconnects,'' Appl. Phys. Lett., vol. 87, p. 211103, 2005.
- 28
-
E. Zschech, H. J. Engelmann, M. A. Meyer, V. Kahlert, A. V. Vairagar, S. G.
Mhaisalkar, A. Krishnamoorthy, M. Yan, K. N. Tu, and V. Sukharev, ``Effect
of Interface Strength on Electromigrationinduced Inlaid Copper
Interconnect degradation: Experiment and Simulation,'' Z.
Metallkunde, vol. 96, no. 9, pp. 966-971, 2005.
- 29
-
N. D. McCusker, H. S. Gamble, and B. M. Armstring, ``Surface
Electromigration in Copper Interconnects,'' Microelectron.
Reliab., vol. 40, pp. 69-76, 2000.
- 30
-
H. Kang, I. Asano, C. Ryu, and S. Wong, ``Grain Structure amd
Electromigration Properties of CVD Cu Metallization,'' Proc.
Intl. VLSI Multilevel Interconnection Conf., pp. 223-229, 1993.
- 31
-
A. V. Vairagar, S. G. Mhaisalkar, A. Krishnamoorthy, K. N. Tu, A. M. Gusak,
M. A. Meyer, and E. Zschech, ``In Situ Observation of
Electromigration-Induced Void Migration in Dual-Damascene Cu
Interconnect Structures,'' Appl. Phys. Lett., vol. 85, no. 13, pp.
2502-2504, 2004.
- 32
-
A. V. Vairagar, S. G. Mhaisalkar, M. A. Meyer, E. Zschech, A. Krishnamoorthy,
K. N. Tu, and A. M. Gusak, ``Direct Evidence of Electromigration
Failure Mechanism in Dual-Damascene Cu Interconnect Tree
Structures,'' Appl. Phys. Lett., vol. 87, no. 081909, 2005.
- 33
-
W. Shao, S. G. Mhaisalkar, T. Sritharan, A. V. Vairagar, H. J. Engelmann,
O. Aubel, E. Zschech, A. M. Gusak, and K. N. Tu, ``Direct Evidence of
Cu/Cap/Liner Edge Being the Dominant Electromigration Path in
Dual-Damascene Cu Interconnects,'' Appl. Phys. Lett., vol. 90,
no. 052106, 2007.
- 34
-
J. Proost, T. Hirato, T. Furuhara, and J.-P. Celis, ``Microtexture and
Electromigration-Induced Drift in Electroplated Damascene Cu,''
J. Appl. Phys., vol. 87, no. 6, pp. 2792-2802, 2000.
- 35
-
G. B. Alers, X. Lu, J. H. Sukamoto, S. K. Kailasam, J. Reid, and G. Harm,
``Ifluence of Copper Purity on Microstructure and
Electromigration,'' Proc. Intl. Interconnect Technology Conf., pp.
45-47, 2004.
- 36
-
C. Ryu, k. W. Kwon, A. L. S. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A.
Kavari, G. W. Ray, and S. S. Wong, ``Microstructure and Reliability of
Copper Interconnects,'' IEEE Trans. Electron. Dev., vol. 46,
no. 6, pp. 1113-1120, 1999.
- 37
-
J. Y. Kim, ``Investigation on the Mechanism of Interface
Electromigration in Copper Thin Films,'' Dissertation, The
University of Texas at Arlington, 2006.
- 38
-
Z. S. Choi, R. Mönig, and C. V. Thompson, ``Dependence of the
Electromigration Flux on the Crystallographic Orientations of
Different Grains in Polycrystalline Copper Interconnects,''
Appl. Phys. Lett., vol. 90, p. 241913, 2007.
- 39
-
M. Karimi, T. Tomkowski, G. Vidali, and O. Biham, ``Diffusion of Cu on Cu
Surfaces,'' Phys. Rev. B, vol. 52, no. 7, pp. 5364-5374, 1995.
- 40
-
H. Wendrock, K. Mirpuri, S. Menzel, G. Schindler, and K. Wetzig,
``Correlation of Electromigration Deffects in Small Damascene Cu
Interconnects with their Microstructure,'' Microelectron. Eng.,
vol. 82, pp. 660-664, 2005.
- 41
-
T. G. Koetter, H. Wendrock, H. Schuehrer, C. Wenzel, and K. Wetzig,
``Relationship between Microstructure and Electromigration Damage in
Unpassivated PVD Copper Damascene Interconnects,''
Microelectron. Reliab., vol. 40, pp. 1295-1299, 2000.
- 42
-
O. Kraft and E. Arzt, ``Current Density and Line Width Effects in
Electromigration: A New Damage-Based Lifetime Model,''
Acta Mater., vol. 46, no. 11, pp. 3733-3743, 1998.
- 43
-
C. T. W.R. Fayad, V.K. Andleigh, ``Modeling of the Effects of
Crystallographic Orientation on Electromigration-Limited
Reliability of Interconnects with Bamboo Grain Structures,''
J. Mater. Res., vol. 16, no. 2, pp. 413-416, 2001.
- 44
-
M. Gall, C. Capasso, D. Jawarani, R. Hernandez, H. Kawasaki, and P. S. Ho,
``Statistical Analysis of Early Failures in Electromigration,''
J. Appl. Phys., vol. 90, no. 2, pp. 732-740, 2001.
- 45
-
J. R. Black, ``Mass Transport of Aluminum by Momentum Exchange with
Conducting Electrons,'' Proc. of 6th Annual Reliability Physics
Symp., pp. 148-159, 1967.
- 46
-
J. R. Black, ``Electromigration-A Brief Survey and Some Recent
Results,'' IEEE Trans. Electron. Dev., vol. 16, no. 4, pp. 338-347,
1969.
- 47
-
J. R. Black, ``Electromigration Failure Modes in Aluminum
Metallization for Semiconductor Devices,'' Proc. IEEE, vol. 57,
no. 9, pp. 1578-1594, 1969.
- 48
-
J. C. Blair, P. G. Ghate, and C. T. Haywood, ``Concerning Electromigration
in Thin Films,'' Proc. IEEE, vol. 59, pp. 1023-1024, 1971.
- 49
-
G. L. Hofman and H. M. Breitling, ``On the Current Density Dependence
of Electromigration in Thin Films,'' Proc. IEEE, vol. 58, p.
833, 1970.
- 50
-
M. Shatzkes and J. Lloyd, ``A Model for Conductor Failure Considering
Diffusion Concurrently with Electromigration Resulting in a Current
Exponent of 2,'' J. Appl. Phys., vol. 59, no. 11, pp. 3890-3893,
1986.
- 51
-
J. Lloyd, ``Electromigration Failure,'' J. Appl. Phys., vol. 69,
no. 11, pp. 7601-7604, 1991.
- 52
-
R. Kirchheim and U. Kaeber, ``Atomistic and Computer Modeling of
Metallization Failure of Integrated Circuits by Electromigration,''
J. Appl. Phys., vol. 70, no. 1, pp. 172-181, 1991.
- 53
-
R. Kirchheim, ``Stress and Electromigration in Al-Lines of Integrated
Circuits,'' Acta Metall. Mater., vol. 40, no. 2, pp. 309-323, 1992.
- 54
-
M. A. Korhonen, P. Borgesen, K. N. Tu, and C.-Y. Li, ``Stress Evolution due
to Electromigration in Confined Metal Lines,'' J. Appl. Phys.,
vol. 73, no. 8, pp. 3790-3799, 1993.
- 55
-
J. J. Clement and C. V. Thompson, ``Modeling Electromigration-Induced
Stress Evolution in Confined Metal Lines,'' J. Appl. Phys.,
vol. 78, no. 2, pp. 900-904, 1995.
- 56
-
J. R. Lloyd, ``Black's Law Revisited - Nucleation and Growth in
Electromigration Failure,'' Microelectron. Reliab., vol. 47, pp.
1468-1472, 2007.
- 57
-
Z. S. Choi, R. Mönig, and C. V. Thompson, ``Activation Energy and
Prefactor for Surface Electromigration and Void Drift in Cu
Interconnects,'' J. Appl. Phys., vol. 102, p. 083509, 2007.
- 58
-
R. S. Sorbello, ``Microscopic Driving Forces for Electromigration,''
Proc. Mater. Research Soc. Symp., vol. 427, pp. 73-81, 1996.
- 59
-
M. E. Glicksman, Diffusion in Solids.John Wiley and Sons, Inc., 2000.
- 60
-
J. R. Lloyd, ``Electromigration in Thin Film Conductors,''
Semicond. Sci. Technol., vol. 12, pp. 1177-1185, 1997.
- 61
-
K. N. Tu, ``Electromigration in Stressed Thin Films,''
Phys. Rev. B, vol. 45, no. 3, pp. 1409-1413, 1992.
- 62
-
R. S. Sorbello, A. Lodder, and S. J. Hoving, ``Finite-Cluster Description
of Electromigration,'' Phys. Rev. B, vol. 25, no. 10, pp.
6178-6187, 1982.
- 63
-
R. S. Sorbello, ``Theory of the Direct Force in Electromigration,''
Phys. Rev. B, vol. 31, no. 2, pp. 798-804, 1985.
- 64
-
P. R. Rimbey and R. S. Sorbello, ``Strong-Coupling Theory for the
Driving Force in Electromigration,'' Phys. Rev. B, vol. 21,
no. 6, pp. 2150-2161, 1980.
- 65
-
P. S. Ho and T. Kwok, ``Electromigration in Metals,'' Rep. Prog.
Phys., vol. 52, no. 3, pp. 301-348, 1989.
- 66
-
J. P. Dekker, A. Lodder, and J. van Ek, ``Theory for the Electromigration
Wind Force in Dilute Alloys,'' Phys. Rev. B, vol. 56, no. 19,
pp. 12167-12177, 1997.
- 67
-
A. Lodder and J. P. Dekker, ``The Electromigration Force in Metallic
Bulk,'' Proc. of the Stress Induced Phenomena in Metallization: 4th
International Workshop, vol. 418, pp. 315-329, 1998.
- 68
-
J. J. Clement, ``Electromigration Modeling for Integrated Circuit
Interconnect Reliability Analysis,'' IEEE Trans. Dev. Mat. Rel.,
vol. 1, no. 1, pp. 33-42, 2001.
- 69
-
A. S. Budiman, C. S.Hau-Riege, P. R. Besser, A. Marathe, Y.-C. Joo, N. Tamura,
J. R. Patel, and W. D. Nix, ``Plasticity-Amplified Diffusivity:
Dislocation Cores as Fast Diffusion Paths in Cu
Interconnects,'' Proc. Intl. Reliability Physics Symp., pp.
122-127, 2007.
- 70
-
E. G. Liniger, L. M. Gignac, C.-K. Hu, and S. Kaldor, ``In Situ Study of
Void Growth Kinetics in Electroplated Cu Lines,'' J. Appl.
Phys., vol. 92, no. 4, pp. 1803-1810, 2002.
- 71
-
L. Arnaud, T. Berger, and G. Reimbold, ``Evidence of Grain-Boundary
Versus Interface Diffusion in Electromigration Experiments in
Copper Damascene Interconnects,'' J. Appl. Phys., vol. 93,
no. 1, pp. 192-204, 2003.
- 72
-
R. Rosenberg and M. Ohring, ``Void Formation and Growth During
Electromigration in Thin Films,'' J. Appl. Phys., vol. 42,
no. 13, pp. 5671-5679, 1971.
- 73
-
J. R. Lloyd and K. P. Rodbell, ``Reliability,'' in Handbook of
Semiconductor Interconnection Technoogy, edited by G. C. Schwartz and
K. V. Srikrishnan, pp. 471-520, 2006.
- 74
-
J. R. Lloyd and J. J. Clement, ``Electromigration in Copper Conductors,''
Thin Solid Films, vol. 262, no. 1, pp. 135-141, 1995.
- 75
-
I. A. Blech, ``Electromigration in Thin Aluminum Films on Titanium
Nitride,'' J. Appl. Phys., vol. 47, no. 4, pp. 1203-1208, 1976.
- 76
-
I. A. Blech and C. Herring, ``Stress Generation by Electromigration,''
Appl. Phys. Lett., vol. 29, no. 3, pp. 131-133, 1976.
- 77
-
I. A. Blech and K. L. Tai, ``Measurement of Stress Gradients Generated
by Electromigration,'' Appl. Phys. Lett, vol. 30, no. 8, pp.
387-389, 1977.
- 78
-
C. Herring, ``Diffusional Viscosity of a Polycrystalline Solid,''
J. Appl. Phys., vol. 21, pp. 437-445, 1950.
- 79
-
E. T. Ogawa, A. J. Bierwag, K.-D. Lee, H. Matsuhashi, P. R. Justinson, and
et al., ``Direct Observation of a Critical Length Effect
in Dual-Damascene Cu/Oxide Interconnects,'' Appl. Phys.
Lett., vol. 78, no. 18, pp. 2652-2645, 2001.
- 80
-
D. Ney, X. Federspiel, V. Girault, O. Thomas, and P. Gergaud,
``Stress-Induced Electromigration Backflow Effect in Copper
Interconnects,'' Trans. Dev. Mater. Reliab., vol. 6, no. 2, pp.
175-180, 2006.
- 81
-
L. Doyen, E. Petitprez, P. Waltz, X. Federspiel, L. Arnaud, and Y. Wouters,
``Extensive Analysis of Resistance Evolution due to
Electromigration Induced Degradation,'' J. Appl. Phys., vol.
104, p. 123521, 2008.
- 82
-
A. S. Oates and M. H. Lin, ``Void Nucleation and Growth Contributions
to the Critical Current Density for Failure in Cu Vias,''
Proc. Intl. Reliability Physics Symp., pp. 452-456, 2009.
- 83
-
J. R. Lloyd, ``Electromigration and Mechanical Stress,''
Microelectron. Eng., vol. 49, pp. 51-64, 1999.
- 84
-
R. W. Balluffi and A. V. Granato, ``Dislocations, Vacancies and
Interstitials,'' in Dislocation in Solids, edited by F. N. R.
Nabarro, pp. 1-133, 1979.
- 85
-
J. J. Clement, ``Reliability Analysis for Encapsulated Interconnect
Lines Under DC and Pulsed DC Current Using a Continuum
Electromigration Transport Model,'' J. Appl. Phys., vol. 82,
no. 12, pp. 5991-6000, 1997.
- 86
-
P. G. Shewmon, Diffusion in Solids.McGraw-Hill, New York, 1963.
- 87
-
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in
Solids.Clarendon Press, Oxford,
1947.
- 88
-
P. A. Flinn, ``Mechanical Stress in VLSI Interconnections: Origins,
Effects, Measurement, and Modeling,'' MRS Bulletin, pp. 70-73,
1995.
- 89
-
R. J. Gleixner, B. M. Clemens, and W. D. Nix, ``Void Nucleation in
Passivated Interconnect Lines: Effects of Site Geometries,
Interfaces, and Interface Flaws,'' J. Mater. Res., vol. 12, pp.
2081-2090, 1997.
- 90
-
G. L. Povirk, ``Numerical Simulations of Electromigration and
Stress-Driven Diffusion in Polycristalline Interconnects,''
Proc. Mater. Research Soc. Symp., vol. 473, pp. 337-342, 1997.
- 91
-
S. Rzepka, M. A. Korhonen, E. R. Weber, and C.-Y. Li, ``Three-Dimensional
Finite Element Simulation of Electro and Stress Migration
Effects in Interconnect Lines,'' Proc. Mater. Research Soc.
Symp., vol. 473, pp. 329-335, 1997.
- 92
-
M. E. Sarychev, Y. V. Zhitnikov, L. Borucki, C.-L. Liu, and T. M. Makhviladze,
``General Model for Mechanical Stress Evolution During
Electromigration,'' J. Appl. Phys., vol. 86, no. 6, pp. 3068-3075,
1999.
- 93
-
H. Ye, C. Basaran, and D. C. Hopkins, ``Numerical Simulation of Stress
Evolution During Electromigration in IC Interconnect Lines,''
IEEE Trans. Compon. Pack. Technol., vol. 26, no. 3, pp. 673-681,
2003.
- 94
-
M. Lin and C. Basaran, ``Electromigration Induced Stress Analysis
Using Fully Coupled Mechanical-Diffusion Equations with
Nonlinear Material Properties,'' Computational Materials
Science, vol. 34, pp. 82-98, 2005.
- 95
-
C. Basaran and M. Lin, ``Damage Mechanics of Electromigration in
Microelectronics Copper Interconnects,'' Intl. J. Materials and
Structural Integrity, vol. 1, pp. 16-39, 2007.
- 96
-
R. V. Goldstein, M. E. Sarychev, D. B. Shirabaikin, A. S. Vladimirov, and Y. V.
Zhitnikov, ``Modeling Electromigration and the Void Nucleation in
Thin-Film Interconnects of Integrated Circuits,'' Intl.
Journal of Fracture, vol. 109, pp. 91-121, 2001.
- 97
-
V. Sukharev, E. Zschech, and W. D. Nix, ``A Model for
Electromigration-Induced Degradation Mechanisms in Dual-Inlaid
Copper Interconnects: Effect of Microstructure,''
J. Appl. Phys., vol. 102, p. 053505, 2007.
- 98
-
V. Sukharev, R. Choudhury, and C. W. Park, ``Physically-Based Simulation
of the Early and Long-Term Failures in Copper Dual-Damascene
Interconnects,'' Proc. Intl. Integrated Reliability Workshop, pp.
80-85, 2003.
- 99
-
V. Sukharev and E. Zschech, ``A Model for Electromigration-Induced
Degradation Mechanisms in Dual-Inlaid Copper Interconnects:
Effect of Interface Bonding Strenght,'' J. Appl. Phys.,
vol. 96, no. 11, pp. 6337-6343, 2004.
- 100
-
V. Sukharev, ``Physically Based Simulation of
Electromigration-Induced Degradation Mechanisms in Dual-Damascene
Copper Interconnects,'' IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 9, pp. 1326-1335, 2005.
- 101
-
D. Dalleau and K. Weide-Zaage, ``Three-Dimensional Voids Simulation in
Chip Metallization Structures: A Contribution to Reliability
Evaluation,'' Microelectron. Reliab., vol. 41, pp. 1625-1630, 2001.
- 102
-
D. Dalleau, K. Weide-Zaage, and Y. Danto, ``Simulation of Time Depending
Void Formation in Copper, Aluminum and Tungsten Plugged Via
Metallization Structures,'' Microelectron. Reliab., vol. 43, pp.
1821-1826, 2003.
- 103
-
P. J. Marcoux, P. P. Merchant, V. Naroditsky, and W. D. Rehder, ``A New 2d
Simulation Model of Electromigration,'' Hewlett-Packard Journal,
pp. 79-84, 1989.
- 104
-
J. J. Clement and J. R. Lloyd, ``Numerical Investigations of the
Electromigration Boundary Value Problem,'' J. Appl. Phys.,
vol. 71, no. 4, pp. 1729-1731, 1992.
- 105
-
W. D. Nix and E. Arzt, ``On Void Nucleation and Growth in Metal
Interconnect Lines under Electromigration Conditions,'' Metall.
Trans. A, vol. 23, pp. 2007-2013, 1992.
- 106
-
D. Hull and D. E. Rimmer, ``The Growth of Grain-Boundary Voids under
Stress,'' Phil. Mag., vol. 4, pp. 673-687, 1959.
- 107
-
J. E. Harris, ``Nucleation of Creep Cavities in Magnesium,''
Trans. Met. AIME, vol. 233, pp. 1509-1516, 1965.
- 108
-
R. Raj and M. F. Ashby, ``Intergranular Fracture at Elevated
Temperatures,'' Acta Metall., vol. 23, pp. 653-666, 1975.
- 109
-
J. P. Hirth and W. D. Nix, ``Analysis of Cavity Nucleation in Solids
Subjected to External and Internal Stresses,'' Acta Metall.,
vol. 33, pp. 359-368, 1985.
- 110
-
H. Ceric, R. L. de Orio, J. Cervenka, and S. Selberherr, ``A Comprehensive
TCAD Approach for Assessing Electromigration Reliability of
Modern Interconnects,'' IEEE Trans. Mat. Dev. Rel., vol. 9, no. 1,
pp. 9-19, 2009.
- 111
-
J. W. Christian, The Theory of Transformations in Metal and
Alloys.3rd ed., Pergamon, 2002.
- 112
-
B. M. Clemens, R. J. Gleixner, and W. D. Nix, ``Void Nucleation On a
Contaminated Patch,'' J. Mater. Res., vol. 12, pp. 2038-2042,
1997.
- 113
-
S. P. Hau-Riege, ``Probabilistic Immortality of Cu Damascene
Interconnects,'' J. Appl. Phys, vol. 91, no. 4, pp. 2014-2022,
2002.
- 114
-
A. V. Vairagar, S. G. Mhaisalkar, and A. Krishnamoorthy, ``Electromigration
Behavior of Dual-Damascene Cu Interconnects - Structure,
Width, and Length Dependences,'' Microelectron. Reliab.,
vol. 44, pp. 747-754, 2004.
- 115
-
W. W. Mullins, ``Mass Transport at Interfaces in Single Component
Systems,'' Metall. Mater. Trans. A, vol. 26, pp. 1918-1929, 1995.
- 116
-
D. N. Bhate, A. Kumar, and A. F. Bower, ``Diffuse Interface Model for
Electromigration and Stress Voiding,'' J. Appl. Phys., vol. 87,
no. 4, pp. 1712-1721, 2000.
- 117
-
D. N. Bhate, A. F. Bower, and A. Kumar, ``A Phase Field Model for
Failure in Interconnect Lines due to Coupled Diffusion
Mechanisms,'' J. Mech. Phys. Solids, vol. 50, pp. 2057-2083, 2002.
- 118
-
P. S. Ho, ``Motion of Inclusion Induced by a Direct Current and a
Temperature Gradient,'' J. Appl. Phys., vol. 41, no. 1, pp.
64-68, 1970.
- 119
-
Z. Suo, W. Wang, and M. Yang, ``Electromigration Instability:
Transgranular Slits in Interconnects,'' Appl. Phys. Lett.,
vol. 64, no. 15, pp. 1944-1946, 1994.
- 120
-
Z. Suo and W. Wang, ``Diffusive Void Bifurcation in Stressed Solid,''
J. Appl. Phys., vol. 76, no. 6, pp. 3410-3421, 1994.
- 121
-
W. Wang, Z. Suo, and T.-H. Hao, ``A Simulation of
Electromigration-Induced Transgranular Slits,'' J. Appl.
Phys., vol. 79, no. 5, pp. 2394-2403, 1996.
- 122
-
T. V. Zaporozhets, A. M. Gusak, K. N. Tu, and S. G. Mhaisalkar, ``Diffuse
Interface Model for Electromigration and Stress Voiding,'' J.
Appl. Phys., vol. 98, p. 103508, 2005.
- 123
-
D. T. Castro, R. J. O. Hoofman, J. Michelon, D. J. Gravesteijn, and
C. Bruynseraede, ``Void Growth Modeling upon Electromigration
Stressing in Narrow Copper Lines,'' J. Appl. Phys., vol. 102,
p. 123515, 2007.
- 124
-
E. Arzt, O. Kraft, W. D. Nix, and J. J. E. Sanchez, ``Electromigration
Failure by Shape Change of Voids in Bamboo Lines,'' J.
Appl. Phys., vol. 76, no. 3, pp. 1563-1571, 1994.
- 125
-
O. Kraft and E. Arzt, ``Electromigration Mechanisms in Conductor Lines:
Void Shape Changes and Slit-Like Failure,'' Acta Mater.,
vol. 45, no. 4, pp. 1599-1611, 1997.
- 126
-
L. Xia, A. F. Bower, Z. Suo, and C. F. Shih, ``A Finite Element
Analysis of the Motion and Evolution of Voids due to Strain and
Electromigration Induced Surface Diffusion,'' J. Mech. Phys.
Solids, vol. 45, no. 9, pp. 1473-1493, 1997.
- 127
-
D. R. Fridline and A. F. Bower, ``Influence of Anisotropic Surface
Diffusivity on Electromigration Induced Void Migration and
Evolution,'' J. Appl. Phys., vol. 85, no. 6, pp. 3168-3174, 1999.
- 128
-
A. F. Bower and S. Shankar, ``Finite Element Model of Electromigration
Induced Void Nucleation, Growth and Evolution in Interconnects,''
Modelling Simul. Mater. Sci. Eng., vol. 15, pp. 923-940, 2007.
- 129
-
H. Ceric and S. Selberherr, ``An Adaptive Grid Approach for the
Simulation of Electromigration Induced Void Migration,''
IEICE Trans. Electronics, no. 3, pp. 421-426, 2002.
- 130
-
H. Ceric and S. Selberherr, ``Simulative Prediction of the Resistance
Change due to Electromigration Induced Void Evolution,''
Microelectron. Reliab., vol. 42, pp. 1457-1460, 2002.
- 131
-
H. Ceric, R. Sabelka, S.Holzer, W.Wessner, S. Wagner, T. Grasser, and
S. Selberherr, ``The Evolution of the Resistance and Current
Density During Electromigration,'' Proc. Intl. Conf. on
Simulation of Semiconductor Processes and Devices, pp. 331-334, 2004.
- 132
-
M. Mahadevan and R. M. Bradley, ``Simulations and Theory of
Electromigration-Induced Slit Formation in Unpassivated
Single-Crystal Metal Lines,'' Phys. Rev. B, vol. 59, no. 16,
pp. 11037-11046, 1999.
- 133
-
M. Mahadevan and R. M. Bradley, ``Phase Field Model of Surface
Electromigration in Single Crystal Metal Thin Films,''
Physica D, vol. 126, pp. 201-213, 1999.
- 134
-
J. A. Sethian, Level Set Methods and Fast Marching Methods:
Evolving Interfaces in Computational Geometry, Fluid Mechanics,
Computer Vision and Materials Science.Cambridge University Press, 1999.
- 135
-
M. Khenner, A. Averbuch, M. Israeli, M. Nathan, and E. Glickman, ``Level
Set Modeling of Transient Electromigration Grooving,'' Comp.
Mater. Sci., vol. 20, pp. 235-250, 2001.
- 136
-
M. Khenner, A. Averbuch, M. Israeli, and M. Nathan, ``Numerical Simulation
of Grain-Boundary Grooving by Level Set Method,'' J. Comp.
Phys., vol. 170, pp. 764-784, 2001.
- 137
-
F. Cacho, V. Fiori, L. Doyen, C. Chappaz, C. Tavernier, and H. Jaouen,
``Electromigration Induced Failure Mechanism: Multiphysics Model
and Correlation with Experiments,'' Proc. Intl. Conf. on Thermal,
Mechanical and Multi-Physics Simulation and Experiments in Microelectronics
and Micro-Systems, pp. 1-6, 2008.
- 138
-
H. Ceric, R. L. de Orio, J. Cervenka, and S. Selberherr, ``Copper
Microstructure Impact on Evolution of Electromigration Induced
Voids,'' Proc. Intl. Conf. on Simulation of Semiconductor Processes
and Devices, pp. 178-181, 2009.
- 139
-
K. Garikipati, L. Bassman, and M. Deal, ``A Lattice-Based
Micromechanical Continuum Formulation for Stress-Driven Mass
Transport in Polycrystalline Solids,'' J. Mech. Phys. Solids,
vol. 49, pp. 1209-1237, 2001.
- 140
-
C. K. Hu, R. Rosenberg, and K. Y. Lee, ``Electromigration Path in Cu
Thin-Film Lines,'' Appl. Phys. Lett., vol. 74, no. 20, pp.
2945-2947, 1999.
- 141
-
S. H. Rhee, Y. Du, and P. S. Ho, ``Thermal Stress Characteristics of
Cu/Oxide and Cu/Low-k Submicron Interconnect Structures,''
J. Appl. Phys., vol. 93, no. 7, pp. 3926-3933, 2003.
- 142
-
P. H. Dederichs and K. Schroeder, ``Anisotropic Diffusion in Stress
Fields,'' Phys. Rev. B, vol. 17, no. 6, pp. 2524-2536, 1978.
- 143
-
C. P. Flynn, Point Defects and Diffusion.Clarendon Press, Oxford, 1972.
- 144
-
D. A. Porter and K. E. Easterling, Phase Transformations in Metals
and Alloys.Stanley Thornes
(Publishers) Ltd, 2000.
- 145
-
M. Diebel and S. T. Dunham, ``Ab-initio Calculations to Predict
Stress Effects on Defects and Diffusion in Silicon,'' Proc.
Intl. Conf. on Simulation of Semiconductor Processes and Devices, pp.
147-150, 2003.
- 146
-
C. Kittel, Introduction to Solid State Physics.John Wiley and Sons, Inc., 1996.
- 147
-
H. Ceric, R. Heinzl, C. Hollauer, T. Grasser, and S. Selberherr,
``Microstructure and Stress Aspects of Electromigration Modeling,''
Proc. of the Stress Induced Phenomena in Metallization: 8th
International Workshop, pp. 262-268, 2006.
- 148
-
R. W. Balluffi, ``Grain Boundary Diffusion Mechanisms in Metals,''
Metall. Trans. A, vol. 13, pp. 2069-2095, 1982.
- 149
-
J. C. Fisher, ``Calculation of Diffusion Penetration Curves for
Surface and Grain Boundary Diffusion,'' J. Appl. Phys.,
vol. 22, no. 1, pp. 74-77, 1951.
- 150
-
F. Lau, C. Mazure, C. Werner, and M. Orlowski, ``A Model for Phosphorus
Segregation at the Silicon-Silicon Dioxide Interface,''
Appl. Phys. A, vol. 49, pp. 671-675, 1989.
- 151
-
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for
Solid and Structural Mechanics.
Elsevier Butterworth Heinemann, 2005.
- 152
-
C. Johnson, Numerical Solution of Partial Differential
Equations by The Finite Element Method.Cambridge University Press, 1987.
- 153
-
R. E. White, An Introduction to The Finite Element Method
with Applications to Nonlinear Problems.John Wiley and Sons, Inc., 1985.
- 154
-
P. Knabner and L. Angermann, Numerik partieller
Differential-gleichungen.
Springer, 2000.
- 155
-
H. Ceric, ``Numerical Techniques in Modern TCAD,'' Dissertation,
Technische Universität Wien, 2005.
- 156
-
C. Hollauer, ``Modeling of Thermal Oxidation and Stress Effects,''
Dissertation, Technische Universität Wien, 2007.
- 157
-
W. Li, M. Tan, and Y. Hou, ``Dynamic Simulation of Electromigration in
Polycrystalline Interconnect Thin Film Using Combined Monte
Carlo Algorithm and Finite Element Modeling,''
J. Appl. Phys., vol. 101, p. 104314, 2007.
- 158
-
W. Li and M. Tan, ``Enhanced Finite Element Modeling of Cu
Electromigration Using Ansys and Matlab,'' Microelectron.
Reliab., vol. 47, pp. 1497-1501, 2007.
- 159
-
L. Doyen, X. Federspiel, L. Arnaud, F. Terrier, Y. Wouters, and V. Girault,
``Electromigration Multistress Pattern Technique for Copper Drift
Velocity and Black's Parameters Extraction,'' Proc. Intl.
Integrated Reliability Workshop, pp. 74-78, 2007.
- 160
-
S. R. de Groot, ``Theorie Phenomenologique de L'Effet Soret,''
Physica, no. 7, pp. 699-707, 1942.
- 161
-
J.-M. Paik, H. Park, and Y.-C. Joo, ``Effect of Low-k Dielectric on
Stress-Induced Damage in Cu Interconnects,'' Microelectron.
Eng., vol. 71, pp. 348-357, 2004.
- 162
-
T. Suzuki, S. O. A. Yamanoue, T. Hosoda, T. Khono, Y. Matsuoka, K. Yanai,
H. Matsuyama, H. Mori, N. Shimizu, T. Nakamura, S. Sugatani, K. Shono, and
H. Yagi, ``Stress Induced Failure Analysis by Stress Measurements
in Copper Dual Damascene Interconnects,'' Proc. Intl.
Interconnect Technology Conf., pp. 229-230, 2002.
- 163
-
M. Y. Yan, K. N. Tu, A. V. Vairagar, S. G. Mhaisalkar, and A. Krishnamoorthy,
``Confinement of Electromigration Induced Void Propagation in Cu
Interconnect by a Buried Ta Diffusion Barrier Layer,''
Appl. Phys. Lett., vol. 87, p. 261906, 2005.
- 164
-
M. A. Meyer, M. Herrmann, E. Langer, and E. Zschech, ``In Situ SEM
Observation of Electromigration Phenomena in Fully Embedded
Copper Interconnect Structures,'' Microelectron. Eng., vol. 64,
pp. 375-382, 2002.
- 165
-
E. T. Ogawa, J. W. McPherson, J. A. Rosal, K. J. Dickerson, T. C. Chiu, L. Y.
Tsung, M. K. Jain, T. D. Bonifiled, J. C. Ondrusek, and W. R. McKee,
``Stress-Induced Voiding under Vias Connected to Wide Cu
Metal Leads,'' Proc. Intl. Reliability Physics Symp., pp.
312-321, 2002.
- 166
-
H. Matsuyama, M. Shiozu, T. Kouno, T. Suzuki, H. Ehara, S. Otsuka, T. Hosoda,
T. Nakamura, Y. Mizushima, M. Miyajima, and K. Shono, ``New Degradation
Phenomena of Stress-Induced Voiding Inside Via in Copper
Interconnects,'' Proc. Intl. Reliability Physics Symp., pp.
638-639, 2007.
- 167
-
K. Yoshida, T. Fujimaki, T. Miyamoto, T. Honma, H. Kaneko, H. Nakazawa, and
M. Morita, ``Stress-Induced Voiding Phenomena for an Actual CMOS
LSI Interconnects,'' Digest Intl. Electron Devices Meeting, pp.
753-756, 2002.
- 168
-
M. R. Sorensen, Y. Mishin, and A. F. Voter, ``Diffusion Mechanisms in Cu
Grain Boundaries,'' Phys. Rev. B, vol. 62, no. 6, pp. 3658-3673,
2000.
Next: List of Publications
Up: Dissertation R.L. de Orio
Previous: 6. Conclusion and Outlook
R. L. de Orio: Electromigration Modeling and Simulation