next up previous contents
Next: List of Acronyms Up: Dissertation Palankovski Previous: List of Tables

List of Symbols

$\Delta $ ... step, difference, change
$\Phi_\mathrm {ms}$ ... metal workfunction difference potential
$\alpha$ ... exponent
$\beta$ ... exponent
$\beta_{n}$, $\beta_{p}$, $\beta_{\nu}$ ... electron, hole, and general exponents in mobility models
$\gamma$ ... exponent in mobility models
$\delta E_{\nu}$ ... barrier height lowering
$\varepsilon$ ... dielectric constant
$\varepsilon_{\mathrm{s}}$, $\varepsilon_{\mathrm{ins}}$ ... dielectric constant of semiconductor, insulator
$\varepsilon_{\mathrm{r}}^{\mathrm{}}$ ... relative dielectric constant
$\kappa_{\mathrm{L}}$ ... lattice thermal conductivity
$\kappa_{n}, \kappa_{p}$ ... thermal conductivity of electron and hole gas
$\mu_{\nu}$ ... mobility of carrier type ${\nu}$
$\mu^{\mathrm{L}}_{\nu}$ ... mobility due to lattice scattering
$\mu^{\mathrm{LI}}_{\nu}$ ... mobility due to lattice and impurity scattering
$\mu^{\mathrm{LIS}}_{\nu}$ ... mobility due to lattice, impurity, and surface scattering
$\mu^{\mathrm{LISF}}_{\nu}$ ... mobility including lattice, impurity, surface scattering, and high-field reduction
$\mu^{\mathrm{LIST}}_{\nu}$ ... mobility including lattice, impurity, surface scattering, and high-temperature reduction
$\mu_{n}$, $\mu_{p}$ ... electron and hole mobilities
$\rho_{\mathrm{L}}$ ... mass density
$\sigma_\mathrm {s}$ ... surface (interface) charge density
$\sigma_\mathrm {ox}$ ... oxide conductivity
$\sigma_{\mathrm{T},n}$, $\sigma_{\mathrm{T},p}$ ... trap capture cross sections for electrons and holes
$\tau_{n}$, $\tau_{p}$ ... recombination lifetimes for electrons and holes
$\tau_{\epsilon,n}$, $\tau_{\epsilon,p}$, $\tau_{\epsilon,\nu}$ ... energy relaxation times for electrons, holes, and general carrier type
$\varphi_{\mathrm{s}}$ ... semiconductor contact potential
$\varphi_{\mathrm{m}}$ ... metal quasi-Fermi level
$\varphi_n$, $\varphi_p$ ... quasi-Fermi potentials for electrons and holes
$\psi$ ... electrostatic potential
$\psi_{\mathrm{bi}}$ ... built-in potential
$C$ ... net doping concentration
$C_g$ ... bandgap bowing parameter
$C_\mu$ ... mobility bowing parameter
$C_\mathrm {m,\nu}$ ... relative carrier mass bowing parameter
$\mathbf{D}$ ... dielectric flux
$\mathbf{E}$ ... local electric field
$\mathbf{E}_s$ ... local electric field in semiconductor
$\mathbf{E}_{ins}$ ... local electric field in insulator
$E_{\perp 2}$ ... electric field orthogonal to the interface
$E_b$ ... local band edge energy for electrons or holes
$E_{C}$ ... local band edge energy for electrons
$E_{\mathrm{g}}$ ... bandgap energy
$E_{\mathrm{g,0}}$, $E_{\mathrm{g,300}}$ ... bandgap energy at 0 K, and at 300 K
$E_{\mathrm{i}}$ ... intrinsic Fermi level
$E_{\mathrm{off}}$ ... energy offset
$E_{V}$ ... valence band energy
$\mathrm {E}_{\mathrm{w}}$ ... workfunction energy difference
$F_{n}$, $F_{p}$ ... driving force for electrons and holes
$H$ ... heat generation
$I_\mathrm {E}$, $I_\mathrm {B}$, $I_\mathrm {C}$ ... emitter, base, collector currents
$\mathbf{J}_n$, $\mathbf{J}_p$ ... electron and hole current densities
$M_{C}$ ... valley degeneracy factor of the conduction band
$N$ ... number of electrons of a given chemical element
$N_\mathrm {A}$ ... acceptor doping concentration
$N_{C}$ ... effective density of states for electrons
$N_{C,0}$ ... effective density of states for electrons evaluated at reference temperature $T_0$
$N_\mathrm {D}$ ... donor doping concentration
$N_{\mathrm{T}}$ ... trap density
$N_{V}$ ... effective density of states for holes
$N_{V,0}$ ... effective density of states for holes evaluated at reference temperature $T_0$
$Q_s$ ... total charge in the device
$R$ ... net recombination rate
$R^{\mathrm{AU}}$ ... Auger recombination rate
$R^{\mathrm{BB}}$ ... band to band tunneling recombination rate
$R^{\mathrm{II}}$ ... impact ionization recombination rate
$R^{\mathrm{SRH}}$ ... SRH net recombination rate
$R_g$ ... global thermal resistance
$R_{\mathrm{T}}$ ... thermal resistance
$S_{n}$, $S_{p}$ ... surface recombination velocities for electrons and holes
$\mathbf{S}_n$, $\mathbf{S}_p$ ... electron and hole heat flux density
$\mathbf{S}_{\mathrm{L}}$ ... lattice heat flux density
$T_{\mathrm{C}}$ ... contact temperature
$T_{{\mathrm{L}}}$ ... local lattice temperature
$T_{n}$, $T_{p}$ ... electron and hole temperatures
$V_\mathrm {ox}$ ... voltage drop over the oxide at the polysilicon contact
$V_\mathrm {BE}$, $V_\mathrm {CE}$ ... base-to-emitter voltage, collector-to-emitter voltage
$V(r)$, $V(k)$ ... Coulomb potential
$Z$ ... atomic number of a given chemical element
$c_{{\mathrm{L}}}$ ... lattice heat capacity (specific heat)
$c_{n}$, $c_{p}$ ... heat capacity of electron gas and hole gas
$d$ ... thickness, length
$d_\mathrm {tun}$ ... effective tunneling length
$d_\mathrm {ox}$ ... oxide thickness
$f_{\mathrm{T}}$ ... current gain cutoff frequency
$f_{\mathrm{max}}$ ... maximum frequency of oscillation
$g_m$ ... transconductance
$h$ ... Planck constant
$\hbar$ ... reduced Planck constant
$\mathrm{k_B}$ ... Boltzmann constant
$l_g$ ... gatelength
$m_0$ ... free electron mass
$m_{n,p}$ ... relative masses of electrons and holes
$\mathbf{n}$ ... a normal vector
$n$ ... electron concentration
$n_i$ ... intrinsic concentration
$p$ ... hole concentration
$\mathrm{q}$ ... elementary charge
$t$ ... time
$v_{n,300}$, $v_{p,300}$ ... thermal velocities at 300 K for electrons and holes
$v_{sat,n}$, $v_{sat,p}$ ... electron and hole saturation velocities
$w$ ... average electron energy
$y^{\mathrm{ref}}$ ... surface reference distance


next up previous contents
Next: List of Acronyms Up: Dissertation Palankovski Previous: List of Tables
Vassil Palankovski
2001-02-28