next up previous contents
Next: B6. Pearson Function Up: B. Optimization Previous: B4. Some Derivatives of


B5. Gauß Function

The Gauß function is frequently used as a simple model for the dopant distribution. The Gauß function is expressed by

\begin{displaymath}
f(y) = \frac{1}{\sqrt{2 \cdot \pi} \sigma}
e^{ \left ( - \frac{ \left ( x - R_p \right )^{2}}{2 \cdot \sigma}
\right )}
\end{displaymath} (B8)

where Rp is the projected range and $\sigma$ is the standard deviation.




R. Plasun