Notation

$ x$ ... Scalar
$ x^\ast$ ... Complex conjugate of $ x$
$ {\mathbf{x}}$ ... Vector
$ \mathbf{e}_x$ ... Unity vector in direction x
$ \mathbf{x} \cdot \mathbf{y}$ ... Scalar inner product
$ \partial_t(\cdot)$ ... Partial derivative with respect to $ t$
$ \ensuremath{{\mathbf{\nabla}}}$ ... Nabla operator
$ \ensuremath{{\mathbf{\nabla}}}\mathbf{x}$ ... Gradient of $ {\mathbf{x}}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \mathbf{x}$ ... Divergence of $ {\mathbf{x}}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \ensuremath{{\mathbf{\nabla}}}= \ensuremath{{\mathbf{\nabla}}}^2$ ... LAPLACE operator
$ \ensuremath{{\underline{A}}}$ ... Matrix
$ A_{ij}$ ... Elements of the matrix $ {\underline{A}}$
$ \ensuremath{{\underline{A}}}^\dagger$ ... Conjugate transposed matrix: $ A_{ij} = A_{ji}^\ast$
$ I$ ... Unity matrix
$ \ensuremath{\mathrm{det}}(\cdot)$ ... Determinant of a matrix
$ G$ ... GREEN's function
$ H$ ... HAMILTONian in the first quantization
$ \hat{H}$ ... HAMILTONian in the second quantization
$ \hat{\psi}$ ... Field operator
$ b$ ... Annihilation operator for bosons
$ c$ ... Annihilation operator for fermions
$ b^{\dagger}$ ... Creation operator for bosons
$ c^{\dagger}$ ... Creation operator for fermions
$ \langle\cdot\rangle$ ... Statistical average
$ \otimes $ ... Convolution

M. Pourfath: Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors