next up previous
Next: 3.3 Boundary and Interface Up: 3.2.11 Impact Ionization Previous: 3.2.11.2 Hydrodynamic Impact Ionization

3.2.11.3 Simplified Hydrodynamic Model

In a straight forward approach a simplified model can also be applied for hydrodynamic transport. The generation rates read:

    $\displaystyle G_n(T_n,{\it T}_\mathrm{L},n) = n \cdot A_n \cdot \exp \bigg(\frac{-B_n \cdot {\it E}_\mathrm{g}}{{\it k}_{\mathrm{B}}T_n}\bigg)$ (3.79)

and:
    $\displaystyle G_p(T_p,{\it T}_\mathrm{L}, p) = p \cdot A_p \cdot \exp \bigg( \frac{-B_p \cdot {\it E}_\mathrm{g}}{{\it k}_{\mathrm{B}}T_p}\bigg)$ (3.80)


Table 3.32: Impact ionization rates in bulk III-V semiconductors for the simplified impact ionization model.
Material $ A_n=A_p$ $ B_n$ $ B_p$
  [1/s] - -
GaAs 2.7e12 1.36 1.50
Al$ _{0.2}$Ga$ _{0.8}$As 5e12 1.29 1.37
In$ _{0.25}$Ga$ _{0.75}$As 6.5e12 1.38 1.56
In$ _{0.53}$Ga$ _{0.47}$As 9e12 1.38 1.66
In$ _{0.52}$Al$ _{0.48}$As 4.2e12 1.47 1.87


The parameter $ B_i$ is used to obtain a similar threshold energy for the materials as given in the previous section as a function of band gap. This provides a kind of material dependent consistency. The model is numerically less complex than the previous one. Using the parameters $ A_\nu$ as an effective fitting constant impact ionization can be included into the simulation: the parameters are derived either from a similar approach as in the previous section, or from the fitting of gate currents. Typical values for the extracted parameters are shown in Table 3.32.


next up previous
Next: 3.3 Boundary and Interface Up: 3.2.11 Impact Ionization Previous: 3.2.11.2 Hydrodynamic Impact Ionization
Quay
2001-12-21