next up previous
Next: 3.3.1.2 Thermionic Field Emission Up: 3.3.1 Semiconductor-Semiconductor Interfaces Previous: 3.3.1 Semiconductor-Semiconductor Interfaces

3.3.1.1 Continuous Quasi-Fermi Level

The Continuous Quasi-Fermi level (CQFL) model assumes a constant Fermi level over the interface during current flow. The relations for the current density $ J_\nu$, the carrier concentration $ \nu$, the energy fluxes $ S_\nu$, and the carrier temperatures $ {\it T}_\mathrm{\nu}$ read as follows:

$\displaystyle J_{\nu2} $ $\displaystyle =$ $\displaystyle  J_{\nu1}$ (3.83)
$\displaystyle \nu_2 $ $\displaystyle =$ $\displaystyle  \nu_1 \cdot \bigg(\frac{m_{\nu2}}{m_{\nu1}} \bigg)^{3/2} \cdot \exp \bigg(-\frac{\Delta
E_C}{{\it k}_{\mathrm{B}}\cdot T_ {\nu1}}\bigg)
 $ (3.84)
$\displaystyle S_{\nu2} $ $\displaystyle =$ $\displaystyle  S_{\nu1}- \frac{1}{q} \cdot \Delta E_C \cdot J_{\nu2}$ (3.85)
$\displaystyle T_{\nu1} $ $\displaystyle =$ $\displaystyle  T_{\nu2}$ (3.86)

The four equations constitute a Dirichlet boundary condition at the interface. The model is mostly used to separate segments with no (homojunction) or little band gap discontinuity relative to $ {\it k}_{\mathrm{B}}\cdot{\it T}_\mathrm{L}$ and the band gap. The higher the band gap discontinuity $ \Delta E_C$, the less appropriate the model. For heterojunctions the two models of the next section are to be used.
next up previous
Next: 3.3.1.2 Thermionic Field Emission Up: 3.3.1 Semiconductor-Semiconductor Interfaces Previous: 3.3.1 Semiconductor-Semiconductor Interfaces
Quay
2001-12-21