next up previous
Next: 3.3.2 Semiconductor-Insulator Interfaces Up: 3.3.1 Semiconductor-Semiconductor Interfaces Previous: 3.3.1.1 Continuous Quasi-Fermi Level

3.3.1.2 Thermionic Field Emission

For the modeling of heterointerfaces, i.e., with non-negligible band gap discontinuity, a thermionic field emission model is used which can be applied either without or with tunneling over the interface. It constitutes a Neumann interface condition. The relations for the current density $ J_\nu$ and energy fluxes $ S_\nu$ across the interface read:

$\displaystyle J_{\nu2} $ $\displaystyle =$ $\displaystyle  J_{\nu1}$ (3.87)
$\displaystyle J_{\nu2} $ $\displaystyle =$ $\displaystyle  q \cdot \bigg(v_{\nu1}\nu_1 - \frac{m_{\nu2}}{m_{\nu1}} \cdot \e...
...(-\frac{\Delta
E_\nu - \delta E_{\nu}}{{\it k}_{\mathrm{B}}T_\nu} \bigg) \bigg)$ (3.88)
$\displaystyle S_{\nu2} $ $\displaystyle =$ $\displaystyle  S_{\nu1}- \frac{1}{q} \cdot (\Delta E_\nu-\delta E_\nu ) \cdot J_{\nu2}$ (3.89)
$\displaystyle S_{\nu2} $ $\displaystyle =$ $\displaystyle  -\bigg( {\it k}_{\mathrm{B}}\cdot T_{\nu2} \cdot v_{\nu2} \cdot ...
...\frac{\Delta{E}- \delta{E_{\nu}}}{{\it k}_{\mathrm{B}}
\cdot T_\nu}\bigg)\bigg)$ (3.90)

$ m_{\nu i}$ with $ \nu$ = n,p represents the effective masses at both sides of the interface between the segments i=1 and i=2, respectively. $ \Delta{E_{\nu}}$ represents the conduction or valence band discontinuity. The effective barrier reduction $ \delta E_{\nu}$ is modeled as function of the electric field $ E_2$ orthogonal to the interface.
    $\displaystyle \delta E_\nu= \left\{\begin{array}{r@{\quad:\quad}l}
q \cdot E_2 \cdot {\it x}_{\mathrm{tun}}& E_2 > 0, \\
0 & E_2 \leq 0,
\\
\end{array} \right.$ (3.91)

A fit of the barrier reduction $ \delta E_{\nu}$ for the Al$ _{0.2}$Ga$ _{0.8}$As/In$ _{0.25}$Ga$ _{0.75}$As interface was performed in [50] and extended to different material systems, such as AlGaAs/GaAs, InAlAs/ InGaAs, and AlGaN/GaN. The tunneling parameters are found in Table 3.33. These are effective fitting parameters, however, they scale with the tunneling probabilities found in Appendix B.


Table 3.33: Tunneling parameters for various materials.
Material Material Composition $ {\it x}_{\mathrm{tun}}$
  $ x$ [nm]
Al$ _{0.2}$Ga$ _{0.8}$As/GaAs - 3
Al$ _{0.2}$Al$ _{0.8}$As/In$ _{0.25}$Ga$ _{0.75}$As - 7
In$ _{0.52}$Al$ _{0.48}$As/In$ _{0.53}$Ga$ _{0.47}$As - 8
In$ _x$Al$ _{1-x}$As/In$ _x$Ga$ _{1-x}$As 0.33 $ \leq$x $ \leq$ 0.66 7-8
Al$ _x$Ga$ _{1-x}$N/GaN 0.25 3


The thermionic field emission velocity for the segment i is defined as follows:


    $\displaystyle v_{\nu,i}=\sqrt{\frac{2\cdot {\it k}_{\mathrm{B}}\cdot {\it T}_\mathrm{\nu}}{\pi \cdot m_{\nu,i}}}$ (3.92)

The thermal boundary condition between semiconductors in general reads as follows:


    $\displaystyle T_{L1} = T_{L2}$ (3.93)

In the case of heterointerfaces additional entries are necessary in the DD simulation to account for the carriers loosing or gaining energy.


    $\displaystyle \frac{J_n}{q} \cdot \Delta E_C + \frac{J_p}{q}\cdot \Delta E_V = $div$\displaystyle _{A} S_L$ (3.94)

For the HD case this is not required, since the energy relations yield this condition self-consistently.


next up previous
Next: 3.3.2 Semiconductor-Insulator Interfaces Up: 3.3.1 Semiconductor-Semiconductor Interfaces Previous: 3.3.1.1 Continuous Quasi-Fermi Level
Quay
2001-12-21