(image) (image) [ Previous ] [ ]

Chapter 8 Conclusion and Outlook

This work presents major contributions to accelerate key computational steps of process TCAD simulations based on the level-set method. In particular, the focus is on the computational steps Velocity Extension and Re-Distancing for which three parallel algorithms, based on the FMM , were developed. Typically, process TCAD simulations require an adaptive spatial discretization to be computationally and practically feasible. The developed algorithms are, therefore, tailored towards hierarchical grids, are able to utilize parallel computational resources, and are thus able to reduce the turnaround time for a wide range of process TCAD simulations. In the following, the key contributions of this work are summarized:

For the computational step Velocity Extension an algorithm employing a relaxed computation order for the grid points reducing the computational complexity is derived, resulting in a reduction of the serial run-time (Chapter 5). Three different orders of computation based on different data structures are compared: The Queue data structure performs best on a representative set of test cases.

In addition, the changes that enable the reordering of the computation also provide the basis for parallelization of the algorithm on a Cartesian grid enabling a parallel speedup of 5.8 for eight threads. Further optimizations, i.e., tailoring the developed algorithm to hierarchical grids, increase the parallel speedup compared to a previous strategy centered around the so-called multi-block FMM. The increased parallel speedup of up to 7.1 for 10 threads is achieved by reducing global synchronization barriers in the developed algorithm and thus enabling a better load-balancing.

For the computational step Re-Distancing an algorithm utilizing block decomposition, which only splits large blocks of a given hierarchical grid, is developed to increase parallel scalability (Chapter 6). The decomposition enables a better implicit load-balancing, by creating a relatively high number of blocks compared to the used number of threads. Additionally, by optimizing the frequency of synchronization steps between the sub-blocks, the overall performance is increased. The so achieved parallel speedup is 17.4 for 24 threads. The performance increase is caused by reducing the influence of ghost points which are not sources for the final signed-distance field. The application of the decomposition algorithm prior to the setup of the FMM enables a straightforward extension of this approach to other methods for computing the signed-distance field, e.g., FIM and FSM. Another extension of the research could be considering cases in which the grid resolution along different axes differs strongly. In this case a dedicated block size along each axis might improve the spatial locality of the created blocks, thus potentially further increasing parallel performance.

For the computational step Re-Distancing an algorithm, which increases the accuracy of the computed signed-distance field via a bottom-up approach, is proposed (Chapter 7). The algorithm efficiently uses a previous top-down re-distancing algorithm to only re-compute the distance at grid points where an improvement of the accuracy is possible. The proposed bottom-up correction algorithm has a low run-time overhead (between 4 % and 10 %). The accuracy of the signed-distance field is significantly increased, e.g., around corners by a factor of up to 2.7. In cases where features smaller than the grid resolution are present on lower grid levels, e.g., a trench thinner than the grid resolution on Level 0, the proposed bottom-up correction algorithm enables correct representation of those features.

Finally, all developed algorithms are applied in combination to the simulation presented as the motivational example (cf. Chapter 1). Figure 8.1 shows a comparison of the original run-time for each time step (cf. Figure 1.7) to the run-time of the reference simulator using the new developed and parallelized algorithms. The overall run-time of the simulation in each time step is more than halved.

(image)

(a)

(image)

(b)
Figure 8.1: (a) Run-time of the level-set method utilizing the developed and presented algorithms for the thermal oxidation process shown for individual time steps, measured on the compute system ICS using 10 threads. The dashed line is the baseline (reference) run-time (combining the run-time of all computational steps for each time step as shown in Figure 1.7). (b) Highlighting the achievements for Velocity Extension and Re-Distancing.

Re-Distancing which has previously been the second biggest contributor to the run-time in a time step is reduced to second or third biggest contributor, depending on whether a Re-Gridding takes place in the specific time step. The overall speedup of 5.0 (cf. Figure 8.1b) for Re-Distancing is in the expected range. The blocks of the hierarchical grid are relatively small (about 45 grid points wide). For such small blocks the gained parallel performance is only slightly larger than the overhead from decomposition.

The leading contributor to the run-time in a time step is Advection, because significant parts of this computational step are not parallelized (and out of scope of this thesis) in the considered reference simulator.

It is especially important to point out that the contribution from Velocity Extension, which originally has been the third highest contributor to the run-time, is now the least contributor (using 10 threads). The serial and parallel speedup combined reduced the run-time by a factor of 18.5 (cf. Figure 8.1b). A further reduction of the run-time is possible, if the process model allows a combined extension of the scalar and vector velocity.

Bibliography

  • [1] A. H. Gencer, A. Lebedev, and P. Pfäffli. “Efficient Full-Flow Process Simulation for 3D Structures Including Stress Modeling”. In: Journal of Computational Electronics 5.4 (2006), pp. 353–356. doi: 10.1007/s10825-006-0024-7.

  • [2] C. K. Maiti. Introducing Technology Computer-Aided Design (TCAD): Fundamentals, Simulations, and Applications. Boca Raton: Jenny Stanford Publishing, 2017. doi: 10.1201/9781315364506.

  • [3] O. Ertl. “Numerical Methods for Topography Simulation”. Doctoral dissertation. TU Wien, 2010. doi: 10.34726/hss.2010.001.

  • [4] S. Berrada, H. Carrillo-Nunez, J. Lee, C. Medina-Bailon, T. Dutta, O. Badami, F. Adamu-Lema, V. Thirunavukkarasu, V. Georgiev, and A. Asenov. “Nano-Electronic Simulation Software (NESS): A Flexible Nano-Device Simulation Platform”. In: Journal of Computational Electronics 19.3 (2020), pp. 1031–1046. doi: 10.1007/s10825-020-01519-0.

  • [5] K. Nishi. “Design with Fluctuations of Device Characteristics - TCAD Can Be of Any Help?” In: Proceedings of the International Conference on ASIC (ASICON). Shanghai: IEEE, 2005, pp. 750–755. doi: 10.1109/ICASIC.2005.1611436.

  • [6] M. R. Shaeri, T.-C. C. Jen, C. Y. Yuan, and M. Behnia. “Investigating Atomic Layer Deposition Characteristics in Multi-Outlet Viscous Flow Reactors Through Reactor Scale Simulations”. In: International Journal of Heat and Mass Transfer 89 (2015), pp. 468–481. doi: 10.1016/j.ijheatmasstransfer.2015.05.079.

  • [7] S. Osher and J. A. Sethian. “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations”. In: Journal of Computational Physics 79.1 (1988), pp. 12–49. doi: 10.1016/0021-9991(88)90002-2.

  • [8] D. Adalsteinsson and J. A. Sethian. “A Fast Level Set Method for Propagating Interfaces”. In: Journal of Computational Physics 118.2 (1995), pp. 269–277. doi: 10.1006/jcph.1995.1098.

  • [9] M. Labschutz, S. Bruckner, M. E. Gröller, M. Hadwiger, and P. Rautek. “JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure”. In: IEEE Transactions on Visualization and Computer Graphics 22.1 (2016), pp. 1025–1034. doi: 10.1109/TVCG.2015.2467331.

  • [10] K. Museth. “VDB: High-Resolution Sparse Volumes with Dynamic Topology”. In: ACM Transactions on Graphics 32.3 (2013), pp. 1–22. doi: 10.1145/2487228.2487235.

  • [11] D. Adalsteinsson and J. A. Sethian. “A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations”. In: Journal of Computational Physics 122.2 (1995), pp. 348–366. doi: 10.1006/jcph.1995.1221.

  • [12] D. Adalsteinsson and J. A. Sethian. “A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography III: Redeposition, Reemission, Surface Diffusion, and Complex Simulations”. In: Journal of Computational Physics 138.1 (1997), pp. 193–223. doi: 10.1006/jcph.1997.5817.

  • [13] J. A. Sethian and D. Adalsteinsson. “An Overview of Level Set Methods for Etching, Deposition, and Lithography Development”. In: IEEE Transactions on Semiconductor Manufacturing 10.1 (1997), pp. 167–184. doi: 10.1109/66.554505.

  • [14] J. A. Sethian. “Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts”. In: Journal of Computational Physics 169.2 (2001), pp. 503–555. doi: 10.1006/jcph.2000.6657.

  • [15] V. Suvorov, A. Hössinger, Z. Djurić, and N. Ljepojevic. “A Novel Approach to Three-Dimensional Semiconductor Process Simulation: Application to Thermal Oxidation”. In: Journal of Computational Electronics 5.4 (2006), pp. 291–295. doi: 10.1007/s10825-006-0003-z.

  • [16] B. Radjenovic, M. Radmilovic-Radjenovic, and M. Mitric. “Application of the Level Set Method on the Non-Convex Hamiltonians”. In: Facta Universitatis - Series: Physics, Chemistry and Technology 7.1 (2009), pp. 33–44. doi: 10.2298/FUPCT0901033R.

  • [17] B. Radjenović, M. Radmilović-Radjenović, and M. Mitrić. “Level Set Approach to Anisotropic Wet Etching of Silicon”. In: Sensors 10.5 (2010), pp. 4950–4967. doi: 10.3390/s100504950.

  • [18] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Vol. 153. New York: Springer, 2003. doi: 10.1007/b98879.

  • [19] A. S. Bahm. “Predictive Modelling of Gas Assisted Electron and Ion Beam Induced Etching and Deposition”. PhD thesis. University of Technology Sydney, 2016.

  • [20] P. Manstetten. “Efficient Flux Calculations for Topography Simulation”. Doctoral dissertation. TU Wien, 2018. doi: 10.34726/hss.2018.57263.

  • [21] R. I. Saye and J. A. Sethian. “A Review of Level Set Methods to Model Interfaces Moving under Complex Physics: Recent Challenges and Advances”. In: Handbook of Numerical Analysis. 1st ed. Oxford: Elsevier, 2020, pp. 509–554. doi: 10.1016/bs.hna.2019.07.003.

  • [22] H.-K. Zhao, B. Merriman, S. Osher, and L. Wang. “Capturing the Behavior of Bubbles and Drops Using the Variational Level Set Approach”. In: Journal of Computational Physics 143.2 (1998), pp. 495–518. doi: 10.1006/jcph.1997.5810.

  • [23] F. Losasso, F. Gibou, and R. Fedkiw. “Simulating Water and Smoke with an Octree Data Structure”. In: ACM Transactions on Graphics 23.3 (2004), pp. 457–462. doi: 10.1145/1015706.1015745.

  • [24] F. Losasso, R. Fedkiw, and S. Osher. “Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow”. In: Computers & Fluids 35.10 (2006), pp. 995–1010. doi: 10.1016/j.compfluid.2005.01.006.

  • [25] M. Jemison, E. Loch, M. Sussman, M. Shashkov, M. Arienti, M. Ohta, and Y. Wang. “A Coupled Level Set-Moment of Fluid Method for Incompressible Two-Phase Flows”. In: Journal of Scientific Computing 54.2-3 (2013), pp. 454–491. doi: 10.1007/s10915-012-9614-7.

  • [26] Y. F. Yap, F. M. Vargas, and J. Chai. “A Level-Set Method for Convective-Diffusive Particle Deposition”. In: Applied Mathematical Modelling 37.7 (2013), pp. 5245–5259. doi: 10.1016/j.apm.2012.10.039.

  • [27] A. Sharma. “Level Set Method for Computational Multi-Fluid Dynamics: A Review on Developments, Applications and Analysis”. In: Sadhana 40.3 (2015), pp. 627–652. doi: 10.1007/s12046-014-0329-3.

  • [28] V. T. Nguyen, V. D. Thang, and W. G. Park. “A Novel Sharp Interface Capturing Method for Two- and Three-Phase Incompressible Flows”. In: Computers & Fluids 172 (2018), pp. 147–161. doi: 10.1016/j.compfluid.2018.06.020.

  • [29] K. Luo, C. Shao, M. Chai, and J. Fan. “Level Set Method for Atomization and Evaporation Simulations”. In: Progress in Energy and Combustion Science 73 (2019), pp. 65–94. doi: 10.1016/j.pecs.2019.03.001.

  • [30] T. Du, K. Wu, A. Spielberg, W. Matusik, B. Zhu, and E. Sifakis. “Functional Optimization of Fluidic Devices with Differentiable Stokes Flow”. In: ACM Transactions on Graphics 39.6 (2020), pp. 1–15. doi: 10.1145/3414685.3417795.

  • [31] M. L. Garzon and J. A. Sethian. “Droplet Pairs Electrical Computations Using a Level Set Based Algorithm”. In: Journal of Electrostatics 106 (2020), p. 103458. doi: 10.1016/j.elstat.2020.103458.

  • [32] M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. “An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials”. In: ACM Transactions on Graphics 36.6 (2017). doi: 10.1145/3130800.3130879.

  • [33] J. Liu, Q. Chen, Y. Zheng, R. Ahmad, J. Tang, and Y. Ma. “Level Set-Based Heterogeneous Object Modeling and Optimization”. In: Computer-Aided Design 110 (2019), pp. 50–68. doi: 10.1016/j.cad.2019.01.002.

  • [34] H. Liu, Y. Hu, B. Zhu, W. Matusik, and E. Sifakis. “Narrow-band Topology Optimization on a Sparsely Populated Grid”. In: ACM Transactions on Graphics 37.6 (2019), pp. 1–14. doi: 10.1145/3272127.3275012.

  • [35] Y. Wang, Z. Kang, and P. Liu. “Velocity Field Level-Set Method for Topological Shape Optimization Using Freely Distributed Design Variables”. In: International Journal for Numerical Methods in Engineering 120.13 (2019), pp. 1411–1427. doi: 10.1002/nme.6185.

  • [36] S. Kambampati, C. Jauregui, K. Museth, and H. A. Kim. “Large-Scale Level Set Topology Optimization for Elasticity and Heat Conduction”. In: Structural and Multidisciplinary Optimization 61.1 (2020), pp. 19–38. doi: 10.1007/s00158-019-02440-2.

  • [37] M. Doškář J. Zeman, D. Rypl, and J. Novák. “Level-Set Based Design of Wang Tiles for Modelling Complex Microstructures”. In: Computer-Aided Design 123 (2020), p. 102827. doi: 10.1016/j.cad.2020.102827.

  • [38] B. Wyvill, A. Guy, and E. Galin. “Extending the CSG Tree. Warping, Blending and Boolean Operations in an Implicit Surface Modeling System”. In: Computer Graphics Forum 18.2 (1999), pp. 149–158. doi: 10.1111/1467-8659.00365.

  • [39] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. “Level Set Surface Editing Operators”. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). New York: ACM Press, 2002, p. 330. doi: 10.1145/566570.566585.

  • [40] K. Museth. “DB+Grid: A Novel Dynamic Blocked Grid For Sparse High-Resolution Volumes and Level Sets”. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). New York: ACM Press, 2011, p. 1. doi: 10.1145/2037826.2037894.

  • [41] R. K. Hoetzlein. “GVDB: Raytracing Sparse Voxel Database Structures on the GPU”. In: High Performance Graphics (2016). doi: 10.2312/hpg.20161197.

  • [42] F. Gibou, R. Fedkiw, and S. Osher. “A Review of Level-Set Methods and Some Recent Applications”. In: Journal of Computational Physics 353 (2018), pp. 82–109. doi: 10.1016/j.jcp.2017.10.006.

  • [43] E. Sifakis, C. Garcia, and G. Tziritas. “Bayesian Level Sets for Image Segmentation”. In: Journal of Visual Communication and Image Representation 13.1-2 (2002), pp. 44–64. doi: 10.1006/jvci.2001.0474.

  • [44] L. A Vese and T. F Chan. “A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model”. In: International Journal of Computer Vision 50.3 (2002), pp. 271–293. doi: 10.1023/A:1020874308076.

  • [45] H. Yang, M. Fuchs, B. Jüttler, O. Scherzer, Huaiping Yang, M. Fuchs, B. Juttler, O. Scherzer, H. Yang, M. Fuchs, B. Jüttler, and O. Scherzer. “Evolution of T-Spline Level Sets with Distance Field Constraints for Geometry Reconstruction and Image Segmentation”. In: Proceedings of IEEE International Conference on Shape Modeling and Applications (SMI). Matsushima: IEEE, 2006, pp. 37–37. doi: 10.1109/SMI.2006.12.

  • [46] L.-T. Cheng, J. Dzubiella, J. A. McCammon, and B. Li. “Application of the Level-Set Method to the Implicit Solvation of Nonpolar Molecules”. In: The Journal of Chemical Physics 127.8 (2007), p. 084503. doi: 10.1063/1.2757169.

  • [47] S. Zhou, L.-T. Cheng, H. Sun, J. Che, J. Dzubiella, B. Li, and J. A. McCammon. “LS-VISM: A software Package for Analysis of Biomolecular Solvation”. In: Journal of Computational Chemistry 36.14 (2015), pp. 1047–1059. doi: https://doi.org/10.1002/jcc.23890.

  • [48] Z. Zhang, C. G. Ricci, C. Fan, L.-T. T. Cheng, B. Li, and J. A. McCammon. “Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding”. In: Journal of Chemical Theory and Computation 17.4 (2021), acs.jctc.0c01109. doi: 10.1021/acs.jctc.0c01109.

  • [49] T. Thurgate. “Segment-Based Etch Algorithm and Modeling”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10.9 (1991), pp. 1101–1109. doi: 10.1109/43.85756.

  • [50] M. E. Law. “Grid Adaption near Moving Boundaries in two Dimensions for IC Process Simulation”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 14.10 (1995), pp. 1223–1230. doi: 10.1109/43.466338.

  • [51] M. E. Law and S. M. Cea. “Continuum Based Modeling of Silicon Integrated Circuit Processing: An Object Oriented Approach”. In: Computational Materials Science 12.4 (1998), pp. 289–308. doi: 10.1016/S0927-0256(98)00020-2.

  • [52] AMD Ryzen Threadripper 3990X. https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x. (accessed November 2, 2021).

  • [53] Intel Xeon Platinum 9282. https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html. (accessed November 2, 2021).

  • [54] B. El-Kareh. Fundamentals of Semiconductor Processing Technology. Boston: Springer, 1995. doi: 10.1007/978-1-4615-2209-6.

  • [55] D. Guoy, A. H. Gencer, Z. Tan, S. Chalasani, M. Johnson, L. Villablanca, and S. Simeonov. “3-D Simulation of Silicon Oxidation: Challenges, Progress and Results”. In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Glasgow: IEEE, 2013, pp. 196–199. doi: 10.1109/SISPAD.2013.6650608.

  • [56] M. Quell, V. Suvorov, A. Hössinger, and J. Weinbub. “Parallel Velocity Extension for Level-Set-Based Material Flow on Hierarchical Meshes in Process TCAD”. In: IEEE Transactions on Electron Devices 68.11 (2021), pp. 5430–5437. doi: 10.1109/TED.2021.3087451.

  • [57] W. Joppich and S. Mijalković. Multigrid Methods for Process Simulation. Vienna: Springer, 1993. doi: 10.1007/978-3-7091-9253-5.

  • [58] O. Ertl and S. Selberherr. “A Fast Level Set Framework for Large Three-Dimensional Topography Simulations”. In: Computer Physics Communications 180.8 (2009), pp. 1242–1250. doi: 10.1016/j.cpc.2009.02.002.

  • [59] M. Mirzadeh, A. Guittet, C. Burstedde, and F. Gibou. “Parallel Level-Set Methods on Adaptive Tree-Based Grids”. In: Journal of Computational Physics 322 (2016), pp. 345–364. doi: 10.1016/j.jcp.2016.06.017.

  • [60] J. A. Sethian. “A Fast Marching Level Set Method for Monotonically Advancing Fronts”. In: Proceedings of the National Academy of Sciences 93.4 (1996), pp. 1591–1595. doi: 10.1073/pnas.93.4.1591.

  • [61] J. Yang and F. Stern. “A Highly Scalable Massively Parallel Fast Marching Method for the Eikonal Equation”. In: Journal of Computational Physics 332 (2017), pp. 333–362. doi: 10.1016/j.jcp.2016.12.012.

  • [62] G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub. “A Shared Memory Parallel Multi-Mesh Fast Marching Method for Re-Distancing”. In: Advances in Computational Mathematics 45.4 (2019), pp. 2029–2045. doi: 10.1007/s10444-019-09683-z.

  • [63] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid Generation. Boca Raton: CRC Press, 1998. doi: 10.1201/9781420050349.

  • [64] J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Madison: Society for Industrial and Applied Mathematics, 2004. doi: 10.1137/1.9780898717938.

  • [65] R. E. White. An Introduction to the Finite Element Method with Applications to Nonlinear Problems. New York: Wiley, 1985.

  • [66] R. Eymard, T. Gallouët, and R. Herbin. “Finite Volume Methods”. In: Handbook of Numerical Analysis. Oxford: Elsevier, 2000, pp. 713–1018. doi: https://doi.org/10.1016/S1570-8659(00)07005-8.

  • [67] J. A. Sethian. “Fast Marching Methods”. In: SIAM Review 41.2 (1999), pp. 199–235. doi: 10.1137/S0036144598347059.

  • [68] X. Yang, A. J. James, J. Lowengrub, X. Zheng, and V. Cristini. “An Adaptive Coupled Level-Set/Volume-of-Fluid Interface Capturing Method for Unstructured Triangular Grids”. In: Journal of Computational Physics 217.2 (2006), pp. 364–394. doi: 10.1016/j.jcp.2006.01.007.

  • [69] M. A. Herrmann. “A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids”. In: Journal of Computational Physics 227.4 (2008), pp. 2674–2706. doi: 10.1016/j.jcp.2007.11.002.

  • [70] R. Abgrall, H. Beaugendre, and C. Dobrzynski. “An Immersed Boundary Method Using Unstructured Anisotropic Mesh Adaptation Combined with Level-Sets and Penalization Techniques”. In: Journal of Computational Physics 257.PA (2014), pp. 83–101. doi: 10.1016/j.jcp.2013.08.052.

  • [71] N. R. Morgan and J. I. Waltz. “3D Level Set Methods for Evolving Fronts on Tetrahedral Meshes with Adaptive Mesh Refinement”. In: Journal of Computational Physics 336 (2017), pp. 492–512. doi: 10.1016/j.jcp.2017.02.030.

  • [72] M. Quezada de Luna, D. Kuzmin, and C. E. Kees. “A Monolithic Conservative Level Set Method with Built-In Redistancing”. In: Journal of Computational Physics 379 (2019), pp. 262–278. doi: 10.1016/j.jcp.2018.11.044.

  • [73] G.-S. Jiang and D. Peng. “Weighted ENO Schemes for Hamilton–Jacobi Equations”. In: SIAM Journal on Scientific Computing 21.6 (2000), pp. 2126–2143. doi: 10.1137/S106482759732455X.

  • [74] S. Serna and J. Qian. “Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations”. In: Journal of Scientific Computing 29.1 (2006), pp. 57–81. doi: 10.1007/s10915-005-9015-2.

  • [75] X.-D. Liu, S. Osher, and T. Chan. “Weighted Essentially Non-Oscillatory Schemes”. In: Journal of Computational Physics 115.1 (1994), pp. 200–212. doi: 10.1006/jcph.1994.1187.

  • [76] C.-W. Shu. “High Order Numerical Methods for Time Dependent Hamilton-Jacobi Equations”. In: Mathematics and Computation in Imaging Science and Information Processing. Singapore: National University of Singapore, 2010, pp. 47–91. doi: 10.1142/9789812709066_0002.

  • [77] M. J. Berger and J. Oliger. “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations”. In: Journal of Computational Physics 53.3 (1984), pp. 484–512. doi: 10.1016/0021-9991(84)90073-1.

  • [78] M. J. Berger and P. Colella. “Local Adaptive Mesh Refinement for Shock Hydrodynamics”. In: Journal of Computational Physics 82.1 (1989), pp. 64–84. doi: 10.1016/0021-9991(89)90035-1.

  • [79] J. Bell, M. J. Berger, J. Saltzman, and M. Welcome. “Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws”. In: SIAM Journal on Scientific Computing 15.1 (1994), pp. 127–138. doi: 10.1137/0915008.

  • [80] K. G. Powell, P. L. Roe, and J. Quirk. “Adaptive-Mesh Algorithms for Computational Fluid Dynamics”. In: Algorithmic Trends in Computational Fluid Dynamics. New York: Springer, 1993, pp. 303–337. doi: 10.1007/978-1-4612-2708-3.

  • [81] W. J. Coirier and K. G. Powell. “Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows”. In: AIAA Journal 34.5 (1996), pp. 938–945. doi: 10.2514/3.13171.

  • [82] J. Strain. “Tree Methods for Moving Interfaces”. In: Journal of Computational Physics 151.2 (1999), pp. 616–648. doi: 10.1006/jcph.1999.6205.

  • [83] V. Sochnikov and S. Efrima. “Level Set Calculations of the Evolution of Boundaries on a Dynamically Adaptive Grid”. In: International Journal for Numerical Methods in Engineering 56.13 (2003), pp. 1913–1929. doi: 10.1002/nme.641.

  • [84] N. Shervani-Tabar and O. V. Vasilyev. “Stabilized Conservative Level Set Method”. In: Journal of Computational Physics 375 (2018), pp. 1033–1044. doi: 10.1016/j.jcp.2018.09.020.

  • [85] C. Min and F. Gibou. “A Second Order Accurate Level Set Method on Non-Graded Adaptive Cartesian Grids”. In: Journal of Computational Physics 225.1 (2007), pp. 300–321. doi: 10.1016/j.jcp.2006.11.034.

  • [86] H. Kim and M.-S. S. Liou. “Accurate Adaptive Level Set Method and Sharpening Technique for Three Dimensional Deforming Interfaces”. In: Computers & Fluids 44.1 (2011), pp. 111–129. doi: 10.1016/j.compfluid.2010.12.020.

  • [87] S. Péron and C. Benoit. “Automatic Off-Body Overset Adaptive Cartesian Mesh Method Based on an Octree Approach”. In: Journal of Computational Physics 232.1 (2013), pp. 153–173. doi: 10.1016/j.jcp.2012.07.029.

  • [88] Q. F. Stout, D. L. De Zeeuw, T. I. Gombosi, C. P. T. Groth, H. G. Marshall, and K. G. Powell. “Adaptive Blocks: A High Performance Data Structure”. In: Proceedings of ACM/IEEE Conference on Supercomputing (SC). New York: ACM Press, 1997, pp. 1–10. doi: 10.1145/509593.509650.

  • [89] M. Parashar and J. C. Browne. “On Partitioning Dynamic Adaptive Grid Hierarchies”. In: Proceedings of the International Conference on System Sciences. Wailea: IEEE, 1996, pp. 604–613. doi: 10.1109/HICSS.1996.495511.

  • [90] F. Golay, M. Ersoy, L. Yushchenko, and D. Sous. “Block-Based Adaptive Mesh Refinement Scheme Using Numerical Density of Entropy Production for Three-Dimensional Two-Fluid Flows”. In: International Journal of Computational Fluid Dynamics 29.1 (2015), pp. 67–81. doi: 10.1080/10618562.2015.1012161.

  • [91] K. Wu, N. Truong, C. Yuksel, and R. Hoetzlein. “Fast Fluid Simulations with Sparse Volumes on the GPU”. In: Computer Graphics Forum 37.2 (2018), pp. 157–167. doi: 10.1111/cgf.13350.

  • [92] M. Adams, P. Colella, D. Graves, J. Johnson, N. Keen, T. Ligocki, D. Martin, P. McCorquodale, D. Modiano, T. Schwartz, P.O. Sternberg, and B. van Straalen. “Chombo Software Package for AMR Applications - Design Document”. In: Lawrence Berkeley Natl. Lab. Tech. Rep. LBNL-6616E (2015).

  • [93] B. T. Gunney and R. W. Anderson. “Advances in Patch-Based Adaptive Mesh Refinement Scalability”. In: Journal of Parallel and Distributed Computing 89 (2016), pp. 65–84. doi: 10.1016/j.jpdc.2015.11.005.

  • [94] M. J. Berger and I. Rigoutsos. “An Algorithm for Point Clustering and Grid Generation”. In: IEEE Transactions on Systems, Man, and Cybernetics 21.5 (1991), pp. 1278–1286. doi: 10.1109/21.120081.

  • [95] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. “An Adaptive Level Set Approach for Incompressible Two-Phase Flows”. In: Journal of Computational Physics 148.1 (1999), pp. 81–124. doi: 10.1006/jcph.1998.6106.

  • [96] R. R. Nourgaliev, S. Wiri, N. T. Dinh, and T. G. Theofanous. “On Improving Mass Conservation of Level Set by Reducing Spatial Discretization Errors”. In: International Journal of Multiphase Flow 31.12 (2005), pp. 1329–1336. doi: 10.1016/j.ijmultiphaseflow.2005.08.003.

  • [97] O. Desjardins and H. Pitsch. “A Spectrally Refined Interface Approach for Simulating Multiphase Flows”. In: Journal of Computational Physics 228.5 (2009), pp. 1658–1677. doi: 10.1016/j.jcp.2008.11.005.

  • [98] E. Brun, A. Guittet, and F. Gibou. “A Local Level-Set Method Using a Hash Table Data Structure”. In: Journal of Computational Physics 231.6 (2012), pp. 2528–2536. doi: 10.1016/j.jcp.2011.12.001.

  • [99] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. “Hierarchical RLE Level Set: A Compact and Versatile Deformable Surface Representation”. In: ACM Transactions on Graphics 25.1 (2006), pp. 151–175. doi: 10.1145/1122501.1122508.

  • [100] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallel Correction for Hierarchical Re-Distancing Using the Fast Marching Method”. In: Advances in High Performance Computing. Cham: Springer, 2021, pp. 438–451. doi: 10.1007/978-3-030-55347-0_37.

  • [101] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. Van Straalen, and K. Weide. “A Survey of High Level Frameworks in Block-Structured Adaptive Mesh Refinement Packages”. In: Journal of Parallel and Distributed Computing 74.12 (2014), pp. 3217–3227. doi: 10.1016/j.jpdc.2014.07.001.

  • [102] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. 6th. San Francisco: Morgan Kaufmann Publishers Inc., 2017.

  • [103] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. 2nd. Burlington: Elsevier, 2021. doi: 10.1016/C2011-0-06993-4.

  • [104] L. Dagum and R. Menon. “OpenMP: An Industry Standard API for Shared-Memory Programming”. In: IEEE Computational Science and Engineering 5.1 (1998), pp. 46–55. doi: 10.1109/99.660313.

  • [105] Vienna Scientific Cluster. https://vsc.ac.at/. (accessed November 2, 2021).

  • [106] M. W. Jones, J. A. Baerentzen, and M. Sramek. “3D Distance Fields: A Survey of Techniques and Applications”. In: IEEE Transactions on Visualization and Computer Graphics 12.4 (2006), pp. 581–599. doi: 10.1109/TVCG.2006.56.

  • [107] H.-K. K. Zhao, T. Chan, B. Merriman, and S. J. Osher. “A Variational Level Set Approach to Multiphase Motion”. In: Journal of Computational Physics 127.1 (1996), pp. 179–195. doi: 10.1006/jcph.1996.0167.

  • [108] S. J. Ruuth. “A Diffusion-Generated Approach to Multiphase Motion”. In: Journal of Computational Physics 145.1 (1998), pp. 166–192. doi: 10.1006/jcph.1998.6028.

  • [109] K. Smith, F. Solis, and D. Chopp. “A Projection Method for Motion of Triple Junctions by Level Sets”. In: Interfaces and Free Boundaries 4.3 (2002), pp. 263–276. doi: 10.4171/IFB/61.

  • [110] H. Li, Y. F. Yap, J. Lou, and Z. Shang. “Numerical Modelling of Three-Fluid Flow Using the Level-Set Method”. In: Chemical Engineering Science 126 (2015), pp. 224–236. doi: 10.1016/j.ces.2014.11.062.

  • [111] D. P. Starinshak, S. Karni, and P. L. Roe. “A New Level Set Model for Multimaterial Flows”. In: Journal of Computational Physics 262 (2014), pp. 1–16. doi: 10.1016/j.jcp.2013.12.036.

  • [112] A. Toifl, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “The Level-Set Method for Multi-Material Wet Etching and Non-Planar Selective Epitaxy”. In: IEEE Access 8 (2020), pp. 115406–115422. doi: 10.1109/ACCESS.2020.3004136.

  • [113] Á. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, and R. J. Colom. “Implementation and Evaluation of the Level Set Method: Towards Efficient and Accurate Simulation of Wet Etching for Microengineering Applications”. In: Computer Physics Communications 184.10 (2013), pp. 2299–2309. doi: 10.1016/j.cpc.2013.05.016.

  • [114] Á. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, R. J. Colom, C. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá, and R. J. Colom. “Level Set Implementation for the Simulation of Anisotropic Etching: Application to Complex MEMS Micromachining”. In: Journal of Micromechanics and Microengineering 23.7 (2013), p. 075017. doi: 10.1088/0960-1317/23/7/075017.

  • [115] A. Toifl, M. Quell, A. Hössinger, A. Babayan, S. Selberherr, and J. Weinbub. “Novel Numerical Dissipation Scheme for Level-Set Based Anisotropic Etching Simulations”. In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Udine: IEEE, 2019, pp. 1–4. doi: 10.1109/SISPAD.2019.8870443.

  • [116] M. M. Smiljanić, Ž Lazić, B. Radjenović, M. Radmilović-Radjenović, and V. Jović. “Evolution of Si Crystallographic Planes-Etching of Square and Circle Patterns in 25 wt % TMAH”. In: Micromachines 10.2 (2019), pp. 26–32. doi: 10.3390/mi10020102.

  • [117] H. Liao and T. S. Cale. “Three-Dimensional Simulation of an Isolation Trench Refill Process”. In: Thin Solid Films 236.1-2 (1993), pp. 352–358. doi: 10.1016/0040-6090(93)90695-L.

  • [118] X. Klemenschits, S. Selberherr, and L. Filipovic. “Modeling of Gate Stack Patterning for Advanced Technology Nodes: A Review”. In: Micromachines 9.12 (2018), p. 631. doi: 10.3390/mi9120631.

  • [119] J.-C. Yu, Z.-F. Zhou, J.-L. Su, C.-F. Xia, X.-W. Zhang, Z.-Z. Wu, and Q.-A. Huang. “Three-Dimensional Simulation of DRIE Process Based on the Narrow Band Level Set and Monte Carlo Method”. In: Micromachines 9.2 (2018), p. 74. doi: 10.3390/mi9020074.

  • [120] A. Yanguas-Gil. Growth and Transport in Nanostructured Materials. Cham: Springer, 2017. doi: 10.1007/978-3-319-24672-7.

  • [121] R. Malladi, J. A. Sethian, and B. C. B. Vemuri. “Shape Modeling with Front Propagation: A Level Set Approach”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 17.2 (1995), pp. 158–175. doi: 10.1109/34.368173.

  • [122] D. Adalsteinsson and J. A. Sethian. “The Fast Construction of Extension Velocities in Level Set Methods”. In: Journal of Computational Physics 148.1 (1999), pp. 2–22. doi: 10.1006/jcph.1998.6090.

  • [123] C.-W. Shu and S. Osher. “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes”. In: Journal of Computational Physics 77.2 (1988), pp. 439–471. doi: 10.1016/0021-9991(88)90177-5.

  • [124] R. J. Spiteri and S. J. Ruuth. “A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods”. In: SIAM Journal on Numerical Analysis 40.2 (2002), pp. 469–491. doi: 10.1137/S0036142901389025.

  • [125] M. G. Crandall and P.-L. Lions. “Two Approximations of Solutions of Hamilton-Jacobi Equations”. In: Mathematics of Computation 43.167 (1984), pp. 1–1. doi: 10.1090/S0025-5718-1984-0744921-8.

  • [126] S. K. Godunov. “A Finite Difference Method for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics.” In: Sbornik: Mathematics 47.8-9 (1959), pp. 357–393.

  • [127] S. Osher and C.-W. Shu. “High-Order Essentially Nonoscillatory Schemes for Hamilton–Jacobi Equations”. In: SIAM Journal on Numerical Analysis 28.4 (1991), pp. 907–922. doi: 10.1137/0728049.

  • [128] M. F. Trujillo, L. Anumolu, and D. Ryddner. “The Distortion of the Level Set Gradient Under Advection”. In: Journal of Computational Physics 334 (2017), pp. 81–101. doi: 10.1016/j.jcp.2016.11.050.

  • [129] L. C. Evans. Partial Differential Equations. Berkeley: Graduate Studies in Mathematics, 1998. doi: 10.1090/gsm/019.

  • [130] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). New York: ACM Press, 1987, pp. 163–169. doi: 10.1145/37401.37422.

  • [131] Y. Shen, Y. Ren, and H. Ding. “A 3D Conservative Sharp Interface Method for Simulation of Compressible Two-Phase Flows”. In: Journal of Computational Physics 403 (2020), p. 109107. doi: 10.1016/j.jcp.2019.109107.

  • [132] T. S. Newman and H. Yi. “A Survey of the Marching Cubes Algorithm”. In: Computers & Graphics 30.5 (2006), pp. 854–879. doi: 10.1016/j.cag.2006.07.021.

  • [133] L. Gnam. “High Performance Mesh Adaptation for Technology Computer-Aided Design”. Doctoral dissertation. TU Wien, 2020. doi: 10.34726/hss.2020.76784.

  • [134] TCAD - Sentaurus Process. https://www.synopsys.com/silicon/tcad/process-simulation/sentaurus-process.html. (accessed November 2, 2021).

  • [135] Silvaco Victory Process. https://silvaco.com/tcad/victory-process-3d/. (accessed November 2, 2021).

  • [136] O. Ertl, L. Filipovic, P. Manstetten, X. Klemenschits, and J. Weinbub. ViennaTS - The Vienna Topography Simulator. (accessed November 2, 2021). url: https://github.com/viennats/viennats-dev.

  • [137] M. Quell, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Level-Set Velocity Extension Algorithm for Nanopatterning Applications”. In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Udine: IEEE, 2019, pp. 1–4. doi: 10.1109/SISPAD.2019.8870482.

  • [138] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Construction of Extension Velocities for the Level-Set Method”. In: Lecture Notes in Computer Science. Cham: Springer, 2020, pp. 348–358. doi: 10.1007/978-3-030-43229-4_30.

  • [139] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numerische Mathematik 1.1 (1959), pp. 269–271. doi: 10.1007/BF01386390.

  • [140] D. L. Chopp. “Another Look at Velocity Extensions in the Level Set Method”. In: SIAM Journal on Scientific Computing 31.5 (2009), pp. 3255–3273. doi: 10.1137/070686329.

  • [141] G. F. Ouyang, Y. C. Kuang, and X. M. Zhang. “A Fast Scanning Algorithm for Extension Velocities in Level Set Methods”. In: Advanced Materials Research 328.1 (2011), pp. 677–680. doi: 10.4028/www.scientific.net/AMR.328-330.677.

  • [142] F. de Gournay and D. E. Gournay. “Velocity Extension for the Level-Set Method and Multiple Eigenvalues in Shape Optimization”. In: SIAM Journal on Control and Optimization 45.1 (2006), pp. 343–367. doi: 10.1137/050624108.

  • [143] T. J. Moroney, D. R. Lusmore, S. W. McCue, and D. L. McElwain. “Extending Fields in a Level-Set Method by Solving a Biharmonic Equation”. In: Journal of Computational Physics 343 (2017), pp. 170–185. doi: 10.1016/j.jcp.2017.04.049.

  • [144] T. Aslam, S. Luo, and H. Zhao. “A Static PDE Approach for MultiDimensional Extrapolation Using Fast Sweeping Methods”. In: SIAM Journal on Scientific Computing 36.6 (2014), A2907–A2928. doi: 10.1137/140956919.

  • [145] D. F. Richards, M. O. Bloomfield, S. Sen, and T. S. Cale. “Extension Velocities for Level Set Based Surface Profile Evolution”. In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19.4 (2001), pp. 1630–1635. doi: 10.1116/1.1380230.

  • [146] J. V. Gomez, D. Alvarez, S. Garrido, and L. Moreno. “Fast Methods for Eikonal Equations: An Experimental Survey”. In: IEEE Access 7 (2019), pp. 39005–39029. doi: 10.1109/ACCESS.2019.2906782.

  • [147] T. Hagerup and M. Maas. “Generalized Topological Sorting in Linear Time”. In: Nordic Journal of Computing 1.710 (1993), pp. 279–288. doi: 10.1007/3-540-57163-9_23.

  • [148] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. Cambridge: MIT Press, 2009.

  • [149] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam. “Spintronics Based Random Access Memory: A Review”. In: Materials Today 20.9 (2017), pp. 530–548. doi: 10.1016/j.mattod.2017.07.007.

  • [150] D. Apalkov, B. Dieny, and J. M. Slaughter. “Magnetoresistive Random Access Memory”. In: Proceedings of the IEEE 104.10 (2016), pp. 1796–1830. doi: 10.1109/JPROC.2016.2590142.

  • [151] V. T. Nguyen, P. Sabon, J. Chatterjee, L. Tille, P. V. Coelho, S. Auffret, R. Sousa, L. Prejbeanu, E. Gautier, L. Vila, and B. Dieny. “Novel Approach for Nano-Patterning Magnetic Tunnel Junctions Stacks at Narrow Pitch: A Route Towards high Density STT-MRAM Applications”. In: Proceedings of IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2017, pp. 38.5.1–38.5.4. doi: 10.1109/IEDM.2017.8268517.

  • [152] T. Endoh and H. Honjo. “A Recent Progress of Spintronics Devices for Integrated Circuit Applications”. In: Journal of Low Power Electronics and Applications 8.4 (2018), p. 44. doi: 10.3390/jlpea8040044.

  • [153] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma, N. Onizawa, M. Natsui, S. Ikeda, and H. Ohno. “Standby-Power-Free Integrated Circuits Using MTJ-Based VLSI Computing”. In: Proceedings of the IEEE 104.10 (2016), pp. 1844–1863. doi: 10.1109/JPROC.2016.2574939.

  • [154] M. Pak, W. Zanders, P. Wong, and S. Halder. “Comparison of Different Lithography Approaches for STT-MRAM Orthogonal Array MTJ Pillars”. In: Micro and Nano Engineering 10 (2021), p. 100082. doi: 10.1016/j.mne.2021.100082.

  • [155] A. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi. “Basic Principles of STT-MRAM Cell Operation in Memory Arrays”. In: Journal of Physics D: Applied Physics 46.7 (2013), p. 074001. doi: 10.1088/0022-3727/46/7/074001.

  • [156] M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. O’Sullivan, D. W. Abraham, M. C. Gaidis, G. Hu, S. Brown, Y. Zhu, R. P. Robertazzi, W. J. Gallagher, and D. C. Worledge. “Spin Torque Switching of 20 nm Magnetic Tunnel Junctions with Perpendicular Anisotropy”. In: Applied Physics Letters 100.13 (2012), p. 132408. doi: 10.1063/1.3694270.

  • [157] V. Ip, S. Huang, S. D. Carnevale, I. L. Berry, K. Rook, T. B. Lill, A. P. Paranjpe, and F. Cerio. “Ion Beam Patterning of High-Density STT-RAM Devices”. In: IEEE Transactions on Magnetics 53.2 (2017), pp. 1–4. doi: 10.1109/TMAG.2016.2603921.

  • [158] J. Chatterjee, T. Tahmasebi, J. Swerts, G. S. Kar, and J. De Boeck. “Impact of Seed Layer on Post-Annealing Behavior of Transport and Magnetic Properties of Co/Pt Multilayer-Based Bottom-Pinned Perpendicular Magnetic Tunnel Junctions”. In: Applied Physics Express 8.6 (2015), p. 063002. doi: 10.7567/APEX.8.063002.

  • [159] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. “Shared-Memory Block-Based Fast Marching Method for Hierarchical Meshes”. In: Journal of Computational and Applied Mathematics 392 (2021), p. 113488. doi: 10.1016/j.cam.2021.113488.

  • [160] M. Sussman, P. Smereka, and S. Osher. “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow”. In: Journal of Computational Physics 114.1 (1994), pp. 146–159. doi: 10.1006/jcph.1994.1155.

  • [161] L.-T. Cheng and Y.-H. Tsai. “Redistancing by Flow of Time Dependent Eikonal Equation”. In: Journal of Computational Physics 227.8 (2008), pp. 4002–4017. doi: 10.1016/j.jcp.2007.12.018.

  • [162] G. Russo and P. Smereka. “A Remark on Computing Distance Functions”. In: Journal of Computational Physics 163.1 (2000), pp. 51–67. doi: 10.1006/jcph.2000.6553.

  • [163] T. Wacławczyk. “A Consistent Solution of the Re-Initialization Equation in the Conservative Level-Set Method”. In: Journal of Computational Physics 299 (2015), pp. 487–525. doi: 10.1016/j.jcp.2015.06.029.

  • [164] H. B. Curry. “The Method of Steepest Descent for Non-Linear Minimization Problems”. In: Quarterly of Applied Mathematics 2.3 (1944), pp. 258–261. doi: 10.1090/qam/10667.

  • [165] M. Elsey and S. Esedoḡlu. “Fast and Accurate Redistancing by Directional Optimization”. In: SIAM Journal on Scientific Computing 36.1 (2014), A219–A231. doi: 10.1137/120889447.

  • [166] M. W. Royston. “A Hopf-Lax Formulation of the Eikonal Equation for Parallel Redistancing and Oblique Projection”. PhD thesis. University of California, 2017.

  • [167] B. Lee, J. Darbon, S. Osher, and M. Kang. “Revisiting the Redistancing Problem Using the Hopf–Lax Formula”. In: Journal of Computational Physics 330 (2017), pp. 268–281. doi: 10.1016/j.jcp.2016.11.005.

  • [168] M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, J. Teran, and S. Osher. “Parallel Redistancing Using the Hopf–Lax Formula”. In: Journal of Computational Physics 365 (2018), pp. 7–17. doi: 10.1016/j.jcp.2018.01.035.

  • [169] J. A. Sethian and A. M. Popovici. “3-D Traveltime Computation Using the Fast Marching Method”. In: Geophysics 64.2 (1999), pp. 516–523. doi: 10.1190/1.1444558.

  • [170] A. M. Popovici and J. A. Sethian. “3-D Imaging Using Higher Order Fast Marching Traveltimes”. In: Geophysics 67.2 (2002), pp. 604–609. doi: 10.1190/1.1468621.

  • [171] J. Yang. “An Easily Implemented, Block-Based Fast Marching Method with Superior Sequential and Parallel Performance”. In: SIAM Journal on Scientific Computing 41.5 (2019), pp. C446–C478. doi: 10.1137/18M1213464.

  • [172] J. N. Tsitsiklis. “Efficient Algorithms for Globally Optimal Trajectories”. In: IEEE Transactions on Automatic Control 40.9 (1995), pp. 1528–1538. doi: 10.1109/9.412624.

  • [173] J. Gomez Gonzalez and S. Engineering. “Fast Marching Methods in Path and Motion Planning: Improvements and High-Level Applications”. PhD thesis. Universidad Carlos III Madrid, 2015.

  • [174] F. Mut, G. C. Buscaglia, and E. A. Dari. “New Mass-Conserving Algorithm for Level Set Redistancing on Unstructured Meshes”. In: Journal of Applied Mechanics 73.6 (2006), pp. 1011–1016. doi: 10.1115/1.2198244.

  • [175] J. Qian, Y.-T. Zhang, and H.-K. Zhao. “Fast Sweeping Methods for Eikonal Equations on Triangular Meshes”. In: SIAM Journal on Numerical Analysis 45.1 (2007), pp. 83–107. doi: 10.1137/050627083.

  • [176] Y. Wu, J. Man, and Z. Xie. “A Double Layer Method for Constructing Signed Distance Fields from Triangle Meshes”. In: Graphical Models 76.4 (2014), pp. 214–223. doi: 10.1016/j.gmod.2014.04.011.

  • [177] V. Ramanuj and R. Sankaran. “High Order Anchoring and Reinitialization of Level Set Function for Simulating Interface Motion”. In: Journal of Scientific Computing (2019). doi: 10.1007/s10915-019-01076-0.

  • [178] H. Zhao. “A Fast Sweeping Method for Eikonal Equations”. In: Mathematics of Computation 74.250 (2004), pp. 603–628. doi: 10.1090/S0025-5718-04-01678-3.

  • [179] S. Bak, J. McLaughlin, and D. Renzi. “Some Improvements for the Fast Sweeping Method”. In: SIAM Journal on Scientific Computing 32.5 (2010), pp. 2853–2874. doi: 10.1137/090749645.

  • [180] M. Detrixhe, F. Gibou, and C. Min. “A Parallel Fast Sweeping Method for the Eikonal Equation”. In: Journal of Computational Physics 237 (2013), pp. 46–55. doi: 10.1016/j.jcp.2012.11.042.

  • [181] A. A. Nikitin, A. S. Serdyukov, and A. A. Duchkov. “Cache-Efficient Parallel Eikonal Solver for Multicore CPUs”. In: Computational Geosciences 22.3 (2018), pp. 775–787. doi: 10.1007/s10596-018-9725-9.

  • [182] W.-K. Jeong and R. T. Whitaker. “A Fast Iterative Method for Eikonal Equations”. In: SIAM Journal on Scientific Computing 30.5 (2008), pp. 2512–2534. doi: 10.1137/060670298.

  • [183] J. Weinbub and A. Hössinger. “Accelerated Redistancing for Level Set-Based Process Simulations with the Fast Iterative Method”. In: Journal of Computational Electronics 13.4 (2014), pp. 877–884. doi: 10.1007/s10825-014-0604-x.

  • [184] T. Gillberg. “A Semi-Ordered Fast Iterative Method (SOFI) for Monotone Front Propagation in Simulations of Geological Folding”. In: Proceedings of the International Congress on Modelling and Simulation (MSSANZ). Perth: Modelling, Simulation Society of Australia, and New Zealand, Inc., 2011, pp. 641–647. doi: 10.36334/modsim.2011.A9.gillberg.

  • [185] J. Weinbub, F. Dang, T. Gillberg, and S. Selberherr. “Shared-Memory Parallelization of the Semi-Ordered Fast Iterative Method”. In: Proceedings of the Symposium on High Performance Computing (HPDC). Alexandria: ACM Press, 2015, pp. 217–224.

  • [186] J. Weinbub and A. Hössinger. “Comparison of the Parallel Fast Marching Method, the Fast Iterative Method, and the Parallel Semi-Ordered Fast Iterative Method”. In: Procedia Computer Science 80 (2016), pp. 2271–2275. doi: 10.1016/j.procs.2016.05.408.

  • [187] S. Hong and W.-K. Jeong. “A Group-Ordered Fast Iterative Method for Eikonal Equations”. In: IEEE Transactions on Parallel and Distributed Systems 28.2 (2017), pp. 318–331. doi: 10.1109/TPDS.2016.2567397.

  • [188] M. A. Herrmann. “A Domain Decomposition Parallelization of the Fast Marching Method”. In: Center for Turbulence Research (2003), pp. 213–225.

  • [189] J. Weinbub and A. Hössinger. “Shared-Memory Parallelization of the Fast Marching Method Using an Overlapping Domain-Decomposition Approach”. In: Proceedings of the High Performance Computing Symposium (HPC). San Diego: Society for Computer Simulation International, 2016, pp. 1–8. doi: 10.22360/SpringSim.2016.HPC.052.

  • [190] G. Diamantopoulos, J. Weinbub, A. Hössinger, and S. Selberherr. “Evaluation of the Shared-Memory Parallel Fast Marching Method for Re-Distancing Problems”. In: Proceedings of the International Conference on Computational Science and Its Applications (ICCSA). Trieste: IEEE, 2017, pp. 1–8. doi: 10.1109/ICCSA.2017.7999648.

  • [191] E. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer. “Fabrication of Microstructures with High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process)”. In: Microelectronic Engineering 4.1 (1986), pp. 35–56. doi: 10.1016/0167-9317(86)90004-3.

  • [192] B. Radjenović, J. K. Lee, and M. Radmilović-Radjenović. “Sparse Field Level Set Method for Non-Convex Hamiltonians in 3D Plasma Etching Profile Simulations”. In: Computer Physics Communications 174.2 (2006), pp. 127–132. doi: 10.1016/j.cpc.2005.09.010.

  • [193] P. Liu, D. Zhang, J. Guo, W. Wang, and F. Yang. “Optimization of Photoresist Development and DRIE Processes to Fabricate High Aspect Ratio Si Structure in 5 nm Scale”. In: Journal of Micromechanics and Microengineering 29.3 (2019), p. 035006. doi: 10.1088/1361-6439/aaf940.

  • [194] A. Belyaev and P.-A. Fayolle. “An ADMM-Based Scheme for Distance Function Approximation”. In: Numerical Algorithms 84.3 (2020), pp. 983–996. doi: 10.1007/s11075-019-00789-5.

  • [195] N. Cornea, D. Silver, and P. Min. “Curve-Skeleton Applications”. In: Proceedings of IEEE Visualization (VIS). Minneapolis: IEEE, 2005, pp. 95–102. doi: 10.1109/VISUAL.2005.1532783.

Own Publications

Journal Articles
  • [1] M. Quell, V. Suvorov, A. Hössinger, and J. Weinbub. “Parallel Velocity Extension for Level-Set-Based Material Flow on Hierarchical Meshes in Process TCAD”. In: IEEE Transactions on Electron Devices 68.11 (2021), pp. 5430–5437. doi: 10.1109/TED.2021.3087451.

  • [2] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. “Shared-Memory Block-Based Fast Marching Method for Hierarchical Meshes”. In: Journal of Computational and Applied Mathematics 392 (2021), pp. 113488-1–113488-15. doi: 10.1016/j.cam.2021.113488.

  • [3] W. Auzinger, H. Hofstätter, O. Koch, and M. Quell. “Adaptive Time Propagation for Time-Dependent Schrödinger Equations”. In: International Journal of Applied and Computational Mathematics 7.1 (2021), pp. 6-1–6-14. doi: 10.1007/s40819-020-00937-9.

  • [4] A. Toifl, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “The Level-Set Method for Multi-Material Wet Etching and Non-Planar Selective Epitaxy”. In: IEEE Access 8 (2020), pp. 115406–115422. doi: 10.1109/ACCESS.2020.3004136.

  • [5] W. Auzinger, I. Brezinova, H. Hofstätter, O. Koch, and M. Quell. “Practical Splitting Methods for the Adaptive Integration of Nonlinear Evolution Equations. Part II: Comparison of Local Error Estimation and Step-Selection Strategies for Nonlinear Schrödinger and Wave Equations”. In: Computer Physics Communications 234 (2019), pp. 55–71. doi: 10.1016/j.cpc.2018.08.003.

  • [6] W. Auzinger, H. Hofstätter, O. Koch, M. Quell, and M. Thalhammer. “A Posteriori Error Estimation for Magnus-Type Integrators”. In: ESAIM: Mathematical Modelling and Numerical Analysis 53.1 (2019), pp. 197–218. doi: 10.1051/m2an/2018050.

  • [7] W. Auzinger, O. Koch, and M. Quell. “Adaptive High-Order Splitting Methods for Systems of Nonlinear Evolution Equations with Periodic Boundary Conditions”. In: Numerical Algorithms 75.1 (2017), pp. 261–283. doi: 10.1007/s11075-016-0206-8.

Book Contributions
  • [8] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallel Correction for Hierarchical Re-Distancing Using the Fast Marching Method”. In: Advances in High Performance Computing, Studies in Computational Intelligence. Cham: Springer International Publishing, 2020, pp. 438–451. doi: 10.1007/978-3-030-55347-0_37.

  • [9] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Construction of Extension Velocities for the Level-Set Method”. In: Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 348–358. doi: 10.1007/978-3-030-43229-4_30.

  • [10] W. Auzinger, H. Hofstätter, O. Koch, M. Quell, and M. Thalhammer. “A Posteriori Error Estimation for Magnus-Type Integrators”. In: ASC Report 1/2018. Wien: Vienna University of Technology, 2018, pp. 1–19.

  • [11] W. Auzinger, I. Brezinova, H. Hofstätter, O. Koch, and M. Quell. “Practical Splitting Methods for the Adaptive Integration of Nonlinear Evolution Equations. Part II: Comparison of Local Error Estimation and Step-Selection Strategies for Nonlinear Schrödinger and Wave Equations”. In: ASC Report 14/2017. Wien: Vienna University of Technology, 2017, pp. 1–40.

  • [12] W. Auzinger, O. Koch, and M. Quell. “Adaptive High-Order Splitting Methods for Systems of Nonlinear Evolution Equations with Periodic Boundary Conditions”. In: ASC Report 41/2015. Wien: Vienna University of Technology, 2015, pp. 1–29.

  • [13] W. Auzinger, O. Koch, and M. Quell. “Splittingverfahren für die Gray-Scott-Gleichung”. In: ASC Report 07/2015. Wien: Vienna University of Technology, 2015, pp. 1–11.

Conference Contributions
  • [14] C. Lenz, A. Scharinger, M. Quell, P. Manstetten, A. Hössinger, and J. Weinbub. “Evaluating Parallel Feature Detection Methods for Implicit Surfaces”. In: Proceedings of the Austrian-Slovenian HPC Meeting (ASHPC). Maribor: University of Ljubljana, 2021, p. 31. doi: 10.3359/2021hpc.

  • [15] M. Quell, G. Diamantopoulos, A. Hössinger, and J. Weinbub. “Shared-Memory Block-Based Fast Marching Method for Hierarchical Meshes”. In: Proceedings of the European Seminar on Computing (ESCO). Pilsen: University of West Bohemia, 2020.

  • [16] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Bottom-Up Correction in Hierarchical Re-Distancing for Topography Simulation”. In: Procedings of the High Performance Computing Conference (HPC). Borovets: Bulgarian Academy of Sciences, 2019, p. 45.

  • [17] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Construction of Extension Velocities for the Level-Set Method”. In: Proceedings of the International Conference on Parallel Processing and Applied Mathematics (PPAM). Bialystok: Czestochowa University of Technology, 2019, p. 42.

  • [18] M. Quell, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Level-Set Velocity Extension Algorithm for Nanopatterning Applications”. In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Udine: IEEE, 2019, pp. 335–338. doi: 10.1109/SISPAD.2019.8870482.

  • [19] A. Toifl, M. Quell, A. Hössinger, A. Babayan, S. Selberherr, and J. Weinbub. “Novel Numerical Dissipation Scheme for Level-Set Based Anisotropic Etching Simulations”. In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Udine: IEEE, 2019, pp. 327–330. doi: 10.1109/SISPAD.2019.8870443.

  • [20] G. Diamantopoulos, P. Manstetten, L. Gnam, V. Simonka, L. F. Aguinsky, M. Quell, A. Toifl, A. Hössinger, and J. Weinbub. “Recent Advances in High Performance Process TCAD”. In: Proceedings of the SIAM Conference on Computational Science and Engineering (CSE). Spokane: Society for Industrial and Applied Mathematics, 2019, p. 335.

  • [21] L. Gnam, P. Manstetten, M. Quell, K. Rupp, S. Selberherr, and J. Weinbub. “A Flexible Shared-Memory Parallel Mesh Adaptation Framework”. In: Proceedings of the International Conference on Computational Science and Its Applications (ICCSA). Saint Petersburg: IEEE, 2019, pp. 158–165. doi: 10.1109/ICCSA.2019.00016.

  • [22] A. Hössinger, P. Manstetten, G. Diamantopoulos, M. Quell, and J. Weinbub. “High Performance Computing Aspects in Semiconductor Process Simulation”. In: Proceedings of the Workshop on High Performance TCAD (WHPTCAD). Chicago: Institute for Microelectronics, TU Wien, 2019, pp. 3–4.

  • [23] P. Manstetten, G. Diamantopoulos, L. Gnam, L. F. Aguinsky, M. Quell, A. Toifl, A. Scharinger, A. Hössinger, M. Ballicchia, M. Nedjalkov, and J. Weinbub. “High Performance TCAD: From Simulating Fabrication Processes to Wigner Quantum Transport”. In: Proceedings of the Workshop on High Performance TCAD (WHPTCAD). Chicago: Institute for Microelectronics, TU Wien, 2019, p. 13.

Curriculum Vitae

Personal Information
Name Michael Julian Augustus Quell
Nationality Austrian
Place of Birth Vienna, Austria
Education
06/2018 - present

Doctoral Program, Electrical Engineering,
Institute for Microelectronics,
Technische Universität (TU) Wien

04/2016 - 04/2018

Graduate Studies (MSc), Technical Mathematics,
TU Wien, Faculty of Mathematics and Geoinformation

10/2012 - 04/2016

Graduate Studies (BSc), Technical Mathematics,
TU Wien, Faculty of Mathematics and Geoinformation

09/2011 - 09/2012

Active Reserve Officer Training, Signaling,
Fernmeldetruppenschule, Wien

09/2003 - 06/2011

Matura, Majors: Mathematics, German, Applied Computer Aided Geometry, English(FL)
BRG 8 Albertgasse, Wien

Research Positions
06/2019 - present

University Assistant,
Institute for Microelectronics, TU Wien

06/2018 - present

Project Assistant, Christian Doppler Laboratory for High Performance TCAD,
Institute for Microelectronics, TU Wien

10/2014 - 10/2016

Study Assistant, Institute for Analysis and Scientific Computing, TU Wien