next up previous
Next: 5.1.2 Elastic Model with Up: 5.1 Mechanical Models Previous: 5.1 Mechanical Models

5.1.1 Elastic Model

In this model the materials are treated as elastic solids parameterized by their Young Modulus E and Poisson ratio $ \nu$. The stress tensor is calculated uniquely from the strain tensor which is solved from the Navier Stokes equations [Zie91] together with the displacement boundary conditions.

In theory of linear elasticity with small displacements the strain tensor can be defined as

$\displaystyle \varepsilon$ = $\displaystyle \left(\vphantom{\begin{array}{c}
\varepsilon _{xx}\\
\varepsilon...
...varepsilon _{xy}\\
\varepsilon _{yz}\\
\varepsilon _{zx}
\end{array} }\right.$$\displaystyle \begin{array}{c}
\varepsilon _{xx}\\
\varepsilon _{yy}\\
\varep...
...{zz}\\
\varepsilon _{xy}\\
\varepsilon _{yz}\\
\varepsilon _{zx}
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
\varepsilon _{xx}\\
\varepsilon...
...varepsilon _{xy}\\
\varepsilon _{yz}\\
\varepsilon _{zx}
\end{array} }\right)$ = $\displaystyle \left(\vphantom{\begin{array}{ccc}
\frac{\partial}{\partial x} & ...
...rac{\partial}{\partial z} & 0 &\frac{\partial}{\partial x}
\end{array} }\right.$$\displaystyle \begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0\\
0 & \fr...
... y}\\
\frac{\partial}{\partial z} & 0 &\frac{\partial}{\partial x}
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{ccc}
\frac{\partial}{\partial x} & ...
...rac{\partial}{\partial z} & 0 &\frac{\partial}{\partial x}
\end{array} }\right)$ . $\displaystyle \left(\vphantom{\begin{array}{c}
u\\
v\\
w
\end{array} }\right.$$\displaystyle \begin{array}{c}
u\\
v\\
w
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
u\\
v\\
w
\end{array} }\right)$ = L . $\displaystyle \theta$     (5.1)

with the displacement field:
$\displaystyle \theta$(x, y, z) = $\displaystyle \left(\vphantom{ \begin{array}{c}
u(x,y,z)\\
v(x,y,z)\\
w(x,y,z)
\end{array} }\right.$$\displaystyle \begin{array}{c}
u(x,y,z)\\
v(x,y,z)\\
w(x,y,z)
\end{array}$ $\displaystyle \left.\vphantom{ \begin{array}{c}
u(x,y,z)\\
v(x,y,z)\\
w(x,y,z)
\end{array} }\right)$     (5.2)

Assuming a linear material law, the stress tensor can now be calculated using the equation

$\displaystyle \sigma$ = D . ($\displaystyle \varepsilon$ - $\displaystyle \varepsilon_{0}^{}$) + $\displaystyle \sigma_{0}^{}$     (5.3)

where $ \varepsilon_{0}^{}$ are prestrains and $ \sigma_{0}^{}$ are prestresses due to change of temperature, crystal growth or for, e.g., volumetric expansions as in case of oxidation. Assuming an isotropic material (5.3) can be written as:
$\displaystyle \left(\vphantom{ \begin{array}{c}
\sigma _{xx}\\
\sigma _{yy}\\
\sigma _{zz}\\
\sigma _{xy}\\
\sigma _{yz}\\
\sigma _{zx}
\end{array} }\right.$$\displaystyle \begin{array}{c}
\sigma _{xx}\\
\sigma _{yy}\\
\sigma _{zz}\\
\sigma _{xy}\\
\sigma _{yz}\\
\sigma _{zx}
\end{array}$ $\displaystyle \left.\vphantom{ \begin{array}{c}
\sigma _{xx}\\
\sigma _{yy}\\
\sigma _{zz}\\
\sigma _{xy}\\
\sigma _{yz}\\
\sigma _{zx}
\end{array} }\right)$ = $\displaystyle {\frac{E\cdot(1-\nu)}{(1+\nu)(1-2\nu)}}$ . $\displaystyle \left(\vphantom{ \begin{array}{cccccc}
1 & \frac{\nu}{1-\nu} & \f...
...-\nu)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)}
\end{array} }\right.$$\displaystyle \begin{array}{cccccc}
1 & \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} &...
...2\nu}{2(1-\nu)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)}
\end{array}$ $\displaystyle \left.\vphantom{ \begin{array}{cccccc}
1 & \frac{\nu}{1-\nu} & \f...
...-\nu)} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2(1-\nu)}
\end{array} }\right)$     (5.4)

Introducing the distributed body forces

f (x, y, z) = $\displaystyle \left(\vphantom{ \begin{array}{c}
f_x(x,y,z)\\
f_y(x,y,z)\\
f_z(x,y,z)
\end{array} }\right.$$\displaystyle \begin{array}{c}
f_x(x,y,z)\\
f_y(x,y,z)\\
f_z(x,y,z)
\end{array}$ $\displaystyle \left.\vphantom{ \begin{array}{c}
f_x(x,y,z)\\
f_y(x,y,z)\\
f_z(x,y,z)
\end{array} }\right)$     (5.5)

the system of differential equations to be solved is finally found to:
$\displaystyle {\frac{\partial \sigma_{xx}}{\partial x}}$ + $\displaystyle {\frac{\partial \sigma_{xy}}{\partial y}}$ + $\displaystyle {\frac{\partial \sigma_{zx}}{\partial z}}$ = $\displaystyle {\frac{\partial f}{\partial x}}$     (5.6)
$\displaystyle {\frac{\partial \sigma_{xy}}{\partial x}}$ + $\displaystyle {\frac{\partial \sigma_{yy}}{\partial y}}$ + $\displaystyle {\frac{\partial \sigma_{zy}}{\partial z}}$ = $\displaystyle {\frac{\partial f}{\partial y}}$     (5.7)
$\displaystyle {\frac{\partial \sigma_{xz}}{\partial x}}$ + $\displaystyle {\frac{\partial \sigma_{yz}}{\partial y}}$ + $\displaystyle {\frac{\partial \sigma_{zz}}{\partial z}}$ = $\displaystyle {\frac{\partial f}{\partial z}}$     (5.8)


next up previous
Next: 5.1.2 Elastic Model with Up: 5.1 Mechanical Models Previous: 5.1 Mechanical Models
Mustafa Radi
1998-12-11