List of Abbreviations


\begin{acronym}
% latex2html id marker 1304
[TCAD]
\acro{2D} {Two-dimensional}
...
... \acro{SAO} {Small angle optimization}
\acro{ST} {Slice template}
\end{acronym}

$ {\mathbb{R}}$The real numbers
$ {\mathbb{R}}^n$An $ n$-dimensional vector space over the real numbers
$ a$A scalar
$ \bm{a}$A vector, point, or vertex of $ {\mathbb{R}}^n$
$ \bm{0}$The zero vector or the origin

$ f$A function
$ \operatorname{img}(f)$The image of a function
$ \operatorname{dom}(f)$The domain of a function

$ A$A subset of $ {\mathbb{R}}^n$
$ {\mathcal{P}}(A)$The power set of a set
$ {\mathcal{P}}^\star(A)$The power set of a set without the empty set: $ {\mathcal{P}}^\star(A) = {\mathcal{P}}(A) \setminus \emptyset$
$ \operatorname{cl}(A)$The closure of a set (cf. Definition A.1)
$ \operatorname{int}(A)$The interior of a set (cf. Definition A.1)
$ {\operatorname{bnd}}(A)$The boundary of a set (cf. Definition A.1)
$ \operatorname{int}^\star (A)$The relative interior of a set (cf. Definition A.8)
$ {\operatorname{bnd}}^\star (A)$The relative boundary of a set (cf. Definition A.8)
$ {\operatorname{DIM}}(X)$The dimension of a set (cf. Definition A.6)


$ \mathbb{H}_{\bm{n},d}$A hyperplane with normal vector $ \bm{n}$ and distance to origin $ d$ (cf. Definition A.5)
$ \overline{\mathcal{B}}_r^n(\bm{x})$An $ n$-ball with radius $ r$ and center $ \bm{(}x)$ (cf. Definition A.3)
$ {\mathcal{B}}_r^n(\bm{x})$An open $ n$-ball with radius $ r$ and center $ \bm{(}x)$ (cf. Definition A.3)
$ {\mathcal{H}}_r^n(\bm{x})$An $ n$-half-ball with radius $ r$ and center $ \bm{(}x)$ (cf. Definition A.3)


$ {\mathcal{G}}$A geometry (cf. Definition 2.1)
$ {({\mathcal{G}}, {\widetilde{\xi}})}$A multi-region geometry (cf. Definition 2.2)
$ {\mathcal{E}}$An element space (cf. Definition A.6)
$ {\mathcal{M}}$A mesh (cf. Definition 2.4)
$ {({\mathcal{M}}, {\xi})}$A multi-region mesh (cf. Definition 2.6)
% latex2html id marker 37682
$ {\operatorname{elem}}_k({\mathcal{E}})$The set of all $ k$-dimensional elements of an element space (cf. Definition A.7)
$ {\operatorname{facets}}({\mathcal{E}})$The set of all facets of an element space (cf. Definition A.7)
$ {\operatorname{facets}}_{\mathcal{E}}(E)$The set of all facets of an element (based on an element space) (cf. Definition A.9)
$ {\operatorname{faces}}_{\mathcal{E}}(E)$The set of all faces of an element (based on an element space) (cf. Definition A.9)


$ {\operatorname{aff}}(X)$The affine hull of a set of points (cf. Definition A.15)
$ {\operatorname{conv}}(X)$The convex hull of a set of points (cf. Definition A.16)
$ {\operatorname{simplex}}(X)$A simplex based on a set of points (cf. Definition A.17)


$ \mathfrak{M}^n$The $ n$-dimensional manifold space (cf. Definition A.6)
$ {\mathfrak{E}}^n$The $ n$-dimensional mesh element space (cf. Definition A.25)
$ \mathfrak{L}^n$The $ n$-dimensional geometry space (cf. Definition A.25)
$ \operatorname{ip}(A,B)$The intersection of two partitions (cf. Definition A.29)
$ \operatorname{refine}(S, P)$The partition refinement of two partitions (cf. Definition A.30)


$ {\operatorname{us}}({\mathcal{M}})$The underlying space of a mesh (cf. Definition A.6)
$ {\operatorname{geo}}({\mathcal{M}})$The geometry of a mesh (cf. Definition 2.11)


$ {\mathbb{X}}$A templated structure (cf. Definition 4.3)
$ \operatorname{templ}({\mathbb{X}}, i)$The $ i$-th template of a templated structure (cf. Section 4.1)
$ \operatorname{inst}({\mathbb{X}},i,j), \operatorname{inst}({\mathbb{X}},T_{i,j})$The $ j$-th instance of the $ i$-th template (cf. Section 4.1)
$ \operatorname{tf}_{i,j}$The transformation function of the $ j$-th instance of the $ i$-th template (cf. Definition 4.3)
$ \operatorname{rid}_{i,j}$The region indicator of the $ j$-th instance of the $ i$-th template (cf. Definition 4.3)

$ {\Gamma}$A templated mesh (cf. Definition 4.4) $ {\Lambda}$A templated geometry (cf. Definition 4.4)


$ {\operatorname{AT}}({\mathbb{X}})$The apply-template operator (cf. Section 4.1)
$ {\operatorname{interf}}({\mathbb{X}}, I_1, \dots, I_k)$The instance interface of a templated structure based on a set of instances (cf. Definition 4.6)
$ {\operatorname{interf}}_{\operatorname{geo}}({\mathbb{X}}, I_1, \dots, I_k)$The geometry instance interface of a templated structure based on a set of instances (cf. Definition 4.6)


$ {\mathbb{T}}_{T,U}$A template boundary mapping (cf. Definition 4.7)
$ {\mathfrak{T}}_{\mathbb{X}}$All valid template boundary mappings of a templated structure (cf. Section 4.3)
$ {\operatorname{bndpart}}({\mathbb{X}})$The boundary patch partition of a templated structure (cf. Section 4.3)
$ {\sim}_{\mathbb{X}}$The boundary patch relation (cf. Definition 4.8)

florian 2016-11-21