[1] K. Rupp, A. Jüngel, and T. Grasser. Matrix Compression for Spherical Harmonics Expansions of the Boltzmann Transport Equation for Semiconductors. Journal of Computational Physics, 229(23):8750–8765, 2010.
[2] K. Rupp and S. Selberherr. The Economic Limit to Moore’s Law. Proceedings of the IEEE, 98(3):351–353, 2010.
[3] K. Rupp and S. Selberherr. The Economic Limit to Moore’s Law. IEEE Transactions on Semiconductor Manufactoring, 24(1):1–4, 2011.
[1] K. Rupp, A. Jüngel, and T. Grasser. Matrix Compression for Spherical Harmonics Expansions of the Boltzmann Transport Equation for Semiconductors. ASC Report 10/2010, pages 1–32, 2010.
[1] K. Rupp, T. Grasser, and A. Jüngel. A Matrix Compression Scheme for Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of the Junior Scientist Conference 2010, pages 7–8, 2010.
[2] K. Rupp. Increased Efficiency in Finite Element Computations through Template Metaprogramming. In Proceedings of the Spring Simulation Multiconference 2010, pages 135–142, 2010.
[3] J. Weinbub, K. Rupp, and S. Selberherr. ViennaIPD - An Input Control Language for Scientific Computing. In Proceedings of the Industrial Simulation Conference, pages 34–38, 2010.
[4] K. Rupp and H. Ceric. Analytical and Numerical Investigation of the Segregation Problem. In 4th International Conference Computational Methods in Applied Mathematics (CMAM-4), 2010.
[5] K. Rupp, T. Grasser, and A. Jüngel. Deterministic Numerical Solution of the Boltzmann Transport Equation. In Progress in Industrial Mathematics at ECMI 2010, 2012. To appear.
[6] K. Rupp. Symbolic Integration at Compile Time in Finite Element Methods. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pages 347–354, 2010.
[7] K. Rupp, T. Grasser, and A. Jüngel. System Matrix Compression for Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of the 15th International Conference on Simulation of Semiconductor Processes and Devices, pages 159–162, 2010.
[8] K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A High Level Linear Algebra Library for GPUs and Multi-Core CPUs. In Intl. Workshop on GPUs and Scientific Applications, pages 51–56, 2010.
[9] K. Rupp, J. Weinbub, and F. Rudolf. Automatic Performance Optimization in ViennaCL for GPUs. In Proceedings of the 9th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing, pages 6:1–6:6, 2010.
[10] K. Rupp. Deterministic Numerical Solution of the Boltzmann Transport Equation. In Proceedings of the Austrian-Chinese Workshop on Dissipative Systems: Kinetic Theory and Semiconductor Applications, pages 7–8, 2010.
[11] J. Weinbub, K. Rupp, and S. Selberherr. Distributed Heterogenous High-Performance Computing with ViennaCL. In Abstracts Intl. Conf. on Large-Scale Scientific Computations, pages 88–90, 2011.
[12] J. Weinbub, J. Cervenka, K. Rupp, and S. Selberherr. A Generic High-Quality Meshing Framework. In Proceedings of the 11th US National Congress on Computational Mechanics, 2011.
[13] J. Weinbub, J. Cervenka, K. Rupp, and S. Selberherr. High-Quality Mesh Generation Based on Orthogonal Software Modules. In Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices, pages 139–142, 2011.
[14] K. Rupp, T. Grasser, and A. Jüngel. Parallel Preconditioning for Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices, pages 147–150, 2011.
[15] K. Rupp, T. Grasser, and A. Jüngel. Adaptive Variable-Order Spherical Harmonics Expansion of the Boltzmann Transport Equation. In Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices, pages 151–155, 2011.
[16] K. Rupp, A. Jüngel, and T. Grasser. A GPU-Accelerated Parallel Preconditioner for the Solution of the Boltzmann Transport Equation for Semiconductors. In Proceedings of Facing the Multicore-Challenge II, 2011.
[17] K. Rupp, T. Grasser, and A. Jüngel. On the Feasibility of Spherical Harmonics Expansions of the Boltzmann Transport Equation for Three-Dimensional Device Geometries. In IEDM Technical Digest, 2011.