4.2.4 The Resolvent Series

Equation (4.24) represents a Fredholm integral equation of second kind with a free term determined by function $ G(\vec{k})$. This equation can be rewritten4.4:

$\displaystyle f(x)=\int f(x^{'})K(x^{'},x)\,dx^{'}+g(x),$ (4.25)

where the $ K(x^{'},x)$ and the free term are given functions. The multidimensional variable $ x$ stands for $ (\vec{k},t)$ 4.5. The resolvent series4.6 of a Fredholm integral equation is obtained by replacement of its right hand side into itself:

$\displaystyle f(x)=g(x)+\int g(x_{1})K(x_{1},x)\,dx_{1}+\int dx_{1}\int dx_{2}\,g(x_{1})K(x_{1},x_{2})K(x_{2},x)+\cdots$ (4.26)

This means that the solution of (4.24) can be written as consecutive iterations of the free term:

$\displaystyle f(x)=f^{0}(x)+f^{1}(x)+f^{2}(x)+\cdots.$ (4.27)

To find the iteration terms explicitly (4.24) is rewritten as:
$\displaystyle f_{1}(\vec{k},t)=$   $\displaystyle \int_{0}^{t}\,dt_{1}\int \,d\vec{k}_{1}f_{1}(\vec{k}_{1},t_{1})\w...
...))\cdot
\exp\biggl(-\int_{t_{1}}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr)+$  
    $\displaystyle +G(\vec{K}(0))\exp\biggl(-\int_{0}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr),$ (4.28)

where $ (\vec{k}^{'},t^{'})$ has been replaced by $ (\vec{k}_{1},t_{1})$ and the respective quasi-momentum space trajectory is:
    $\displaystyle \vec{K}(t_{1})=\vec{k}-\frac{q}{\hbar}\vec{E}_{s}(t-t_{1}),$  
    $\displaystyle \vec{K}(t)=\vec{k},$ (4.29)
    $\displaystyle 0<t_{1}<t.$  

Introducing a quasi-momentum space trajectory for the time interval $ 0<t_{2}<t_{1}$:
    $\displaystyle \vec{K}_{1}(t_{2})=\vec{k}_{1}-\frac{q}{\hbar}\vec{E}_{s}(t_{1}-t_{2}),$  
    $\displaystyle \vec{K}_{1}(t_{1})=\vec{k}_{1},$ (4.30)

one obtains for $ f_{1}(\vec{k}_{1},t_{1})$:
$\displaystyle f_{1}(\vec{k}_{1},t_{1})=$   $\displaystyle \int_{0}^{t_{1}}\,dt_{2}\int \,d\vec{k}_{2}f_{1}(\vec{k}_{2},t_{2...
...\exp\biggl(-\int_{t_{2}}^{t_{1}}\widetilde{\lambda}[\vec{K}_{1}(y)]\,dy\biggr)+$  
    $\displaystyle +G(\vec{K}_{1}(0))\exp\biggl(-\int_{0}^{t_{1}}\widetilde{\lambda}[\vec{K}_{1}(y)]\,dy\biggr).$ (4.31)

Substituting (4.32) into (4.29) gives:
    $\displaystyle f_{1}(\vec{k},t)=\int_{0}^{t}\,dt_{1}\int\,d\vec{k}_{1}\int_{0}^{...
...biggl(-\int_{t_{2}}^{t_{1}}\widetilde{\lambda}[\vec{K}_{1}(y)]\,dy\biggr)\times$  
    $\displaystyle \times\widetilde{S}(\vec{k}_{1},\vec{K}(t_{1}))\exp\biggl(-\int_{t_{1}}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr)+$ (4.32)
    $\displaystyle +\int_{0}^{t}\,dt_{1}\int\,d\vec{k}_{1}G(\vec{K}_{1}(0))\exp\bigg...
...(t_{1}))\exp\biggl(-\int_{t_{1}}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr)+$  
    $\displaystyle +G(\vec{K}(0))\exp\biggl(-\int_{0}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr).$  

From (4.34) the first iteration term is obtained:
    $\displaystyle f_{1}^{(1)}(\vec{k},t)=$  
    $\displaystyle \int_{0}^{t}\,dt_{1}\int\,d\vec{k}_{1}G(\vec{K}_{1}(0))\exp\biggl...
...(t_{1}))\exp\biggl(-\int_{t_{1}}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr).$ (4.33)

which is also schematically shown in Fig. 4.1.
Figure 4.1: Graphical representation of the first iteration term.
\includegraphics[width=0.7\linewidth]{figures/figure_9}

In order to obtain the second iteration term the third quasi-momentum space trajectory is introduced for $ 0<t_{3}<t_{2}$

    $\displaystyle \vec{K}_{2}(t_{3})=\vec{k}_{2}-\frac{q}{\hbar}\vec{E}_{s}(t_{2}-t_{3}),$  
    $\displaystyle \vec{K}_{2}(t_{2})=\vec{k}_{2}.$ (4.34)

Then for $ f_{1}(\vec{k}_{2},t_{2})$ in (4.32) one obtained:
$\displaystyle f_{1}(\vec{k}_{2},t_{2})$   $\displaystyle =\int_{0}^{t_{2}}\,dt_{3}\int \,d\vec{k}_{3}f_{1}(\vec{k}_{3},t_{...
...\exp\biggl(-\int_{t_{3}}^{t_{2}}\widetilde{\lambda}[\vec{K}_{2}(y)]\,dy\biggr)+$  
    $\displaystyle +G(\vec{K}_{2}(0))\exp\biggl(-\int_{0}^{t_{2}}\widetilde{\lambda}[\vec{K}_{2}(y)]\,dy\biggr).$ (4.35)

The second iteration term is obtained from (4.36) by replacing $ f_{1}(\vec{k}_{3},t_{3})$ with the free term of (4.29):
    $\displaystyle f_{1}^{(2)}(\vec{k},t)=\int_{0}^{t}\,dt_{1}\int\,d\vec{k}_{1}\int...
...exp\biggl(-\int_{0}^{t_{2}}\widetilde{\lambda}[\vec{K}_{2}(y)]\,dy\biggr)\times$  
    $\displaystyle \times\widetilde{S}(\vec{k}_{2},\vec{K}_{1}(t_{2}))\exp\biggl(-\i...
...(t_{1}))\exp\biggl(-\int_{t_{1}}^{t}\widetilde{\lambda}[\vec{K}(y)]\,dy\biggr).$ (4.36)

This term is displayed graphically in Fig. 4.2.
Figure 4.2: Graphical representation of the second iteration term.
\includegraphics[width=0.7\linewidth]{figures/figure_10}

S. Smirnov: