2.5.1.1 First Order Perturbation

Let $ s$ denote a set of quantum numbers which characterize states of an unperturbed system. The corresponding wave functions are $ \psi_{s}$ and satisfy the unperturbed Schrödinger equation

$\displaystyle \hat{H}_{0}\psi_{s}=E_{s}\psi_{s}.$ (2.86)

In the case of one electron in the lattice, $ s$ represents a band index $ n$ and the components of the quasi-momentum $ \vec{p}=\hbar\vec{k}$, and $ \psi_{s}$ is Bloch's wave function given by (2.66). For electrons in a vibrating lattice $ s$ includes in addition phonon numbers in all possible states and $ \psi_{s}$ is the product of a Bloch wave and the crystal wave function. Bloch's wave functions and the normal lattice modes are subject to the usual periodic boundary conditions in a cube. The wave functions $ \psi_{s}$ are ortho-normalized. Due to the interaction Hamiltonian $ \hat{H}_\mathrm{int}$ the wave function $ \psi_{s}$ turns into a new wave function $ \Psi$. At the initial time $ t=0$ the system is unperturbed which means $ \Psi(t=0)=\psi_{s}$. At $ t>0$ $ \Psi$ is determined by the equation2.28

$\displaystyle i\hbar\frac{\partial\Psi}{\partial t}=\hat{H}\Psi.$ (2.87)

In the absence of the interaction equation (2.87) has the usual solution: $ \Psi=\psi_{s}\exp(-iE_{s}t/\hbar)$. When the interaction is present $ \Psi(t)$ can be represented as a series

$\displaystyle \Psi(t)=\sum_{s^{ (2.88)

where $ a_{s^{ are yet unknown coefficients. Quantities $ \vert a_{s^{ are the probabilities of finding the system in state $ s^{ at time $ t$. They satisfy the condition

$\displaystyle \sum_{s^{ (2.89)

Substituting (2.88) into (2.87) and forming the inner product $ \langle a_{s^{'}}\vert\Psi\rangle$ gives the equation for coefficients $ a_{s^{:

$\displaystyle i\hbar\frac{\partial a_{s^{'}}(t)}{\partial t}=\sum_{s^{ (2.90)

In the first order perturbation the unperturbed values of $ a_{s^{ are used in the right hand side2.29 of (2.90). The unperturbed values of $ a_{s^{ follows from (2.88)2.30:

$\displaystyle i\hbar\frac{\partial a_{s^{'}}}{\partial t}=\langle s^{'}\vert H_\mathrm{int}\vert s\rangle\exp\biggl[\frac{i}{\hbar}(E_{s^{'}}-E_{s})t\biggr].$ (2.91)

The solution of this equation is

$\displaystyle a_{s^{'}}(t)=\frac{-1+\exp\biggl[\frac{i}{\hbar}(E_{s^{'}}-E_{s})t\biggr]}{E_{s}-E_{s^{'}}}\langle s^{'}\vert H_\mathrm{int}\vert s\rangle.$ (2.92)

Therefore the probability of finding a system at time $ t$ in state $ s^{'}$ is

$\displaystyle \vert a_{s^{'}}(t)\vert^{2}=\frac{2\biggl[1-\cos\biggl(\frac{E_{s...
...-E_{s^{'}})^{2}} \vert\langle s^{'}\vert H_\mathrm{int}\vert s\rangle\vert^{2}.$ (2.93)

The transition probability per unit time is equal to the time derivative of (2.93):

$\displaystyle \frac{d\vert a_{s^{'}}(t)\vert^{2}}{dt}=\frac{2}{\hbar} \frac{\si...
...biggr)}{E_{s^{'}}-E_{s}}\vert\langle s^{'}\vert H_{int}\vert s\rangle\vert^{2}.$ (2.94)

S. Smirnov: