[1] C. Wood and D. E. Jena, Eds., Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications. Springer, 2007.
[2] D. Marcon, “Reliability study of power gallium nitride based transistors,” Ph.D. dissertation, Katholieke Universiteit Leuven, 2011.
[3] F. Fornetti, “Characterisation and performance optimisation of GaN HEMTs and amplifiers for radar applications,” Ph.D. dissertation, University of Bristol, 2010.
[4] O. Ambacher, “Growth and applications of group III–nitrides,” Journal of Physics D: Applied Physics, vol. 31, no. 20, p. 2653, 1998.
[5] R. Chierchia, “Strain and crystalline defects in epitaxial GaN layers studied by high–resolution X–ray diffraction,” Ph.D. dissertation, Universiy of Bremen, 2007.
[6] S. Pearton, GaN and Related Materials II, ser. Optoelectronic properties of semiconductors and superlattices. Taylor & Francis, 2000.
[7] “University Wafer, Inc. Educational supplies,” http://www.universitywafer.com/, accessed October 2016.
[8] K. F. Brennan and A. S. Brown, Semiconductor Heterostructures. John Wiley & Sons, Inc., 2003, pp. 14–83.
[9] S. R. Lee, D. D. Koleske, K. C. Cross, J. A. Floro, K. E. Waldrip, A. T. Wise, and S. Mahajan, “In situ measurements of the critical thickness for strain relaxation in AlGaN/GaN heterostructures,” Applied Physics Letters, vol. 85, p. 6164, 2004.
[10] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. DenBaars, J. Speck, and U. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 77, p. 250, 2000.
[11] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560–566, Mar 2001.
[12] Z. H. Feng, R. Zhou, S. Y. Xie, J. Y. Yin, J. X. Fang, B. Liu, W. Zhou, K. J. Chen, and S. J. Cai, “18–GHz 3.65–W/mm enhancement–mode AlGaN/GaN HFET using fluorine plasma ion implantation,” IEEE Electron Device Letters, vol. 31, no. 12, pp. 1386–1388, Dec 2010.
[13] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT): A normally–off AlGaN/GaN power transistor using conductivity modulation,” IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3393–3399, Dec 2007.
[14] T. Oka and T. Nozawa, “AlGaN/GaN recessed MIS–gate HFET with high–threshold–voltage normally–off operation for power electronics applications,” IEEE Electron Device Letters, vol. 29, no. 7, pp. 668–670, July 2008.
[15] P. A. Laplante, Ed., Comprehensive Dictionary of Electrical Engineering, Second Edition. CRC Press, Taylor & Francis Group, 2005.
[16] J. A. Del Alamo and J. Joh, “GaN HEMT reliability,” Microelectronics Reliability, vol. 49, no. 9–11, pp. 1200–1206, 2009.
[17] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni, “Reliability of GaN high–electron–mobility transistors: state of the art and perspectives,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 2, pp. 332–343, June 2008.
[18] D. A. Joh and J. A. Del Alamo, “A current–transient methodology for trap analysis for GaN high electron mobility transistors,” IEEE Transactions on Electron Devices, vol. 58, pp. 132–140, 2011.
[19] A. Santarelli, R. Cignani, G. P. Gibiino, D. Niessen, P. A. Traverso, C. Florian, D. M. M. P. Schreurs, and F. Filicori, “A double–pulse technique for the dynamic I/V characterization of GaN FETs,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, pp. 132–134, Feb 2014.
[20] D. Bisi, M. Meneghini, C. de Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, and E. Zanoni, “Deep–level characterization in GaN HEMTs – part I: Advantages and limitations of drain current transient measurements,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3166–3175, Oct 2013.
[21] C. Y. Hu and T. Hashizume, “Non–localized trapping effects in AlGaN/GaN heterojunction field–effect transistors subjected to on–state bias stress,” Journal of Applied Physics, vol. 111, no. 8, 2012.
[22] C. Ostermaier, P. Lagger, M. Alomari, P. Herfurth, D. Maier, A. Alexewicz, M. A. di Forte-Poisson, S. L. Delage, G. Strasser, D. Pogany, and E. Kohn, “Reliability investigation of the degradation of the surface passivation of InAlN/GaN HEMTs using a dual gate structure,” Microelectronics Reliability, vol. 52, no. 9–10, pp. 1812–1815, 2012.
[23] E. Zanoni, M. Meneghini, G. Meneghesso, D. Bisi, I. Rossetto, and A. Stocco, “Reliability and failure physics of GaN HEMT, MIS-HEMT and p–gate HEMTs for power switching applications: Parasitic effects and degradation due to deep level effects and time–dependent breakdown phenomena,” in IEEE Workshop on Wide Bandgap Power Devices and Applications, Nov 2015, pp. 75–80.
[24] D. Marcon, G. Meneghesso, T. L. Wu, S. Stoffels, M. Meneghini, E. Zanoni, and S. Decoutere, “Reliability analysis of permanent degradations on AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3132–3141, Oct 2013.
[25] A. M. Stoneham, “Non–radiative transitions in semiconductors,” Reports on Progress in Physics, vol. 44, no. 12, p. 1251, 1981.
[26] B. H. Brandsen and C. J. Joachain, Physics of atoms and molecules. Pearson Prentice Hall, 1983.
[27] T. Grasser, “Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities,” Microelectronics Reliability, vol. 52, no. 1, pp. 39–70, 2012.
[28] T. Zhu and R. A. Oliver, “Unintentional doping in GaN,” Physical Chemistry Chemical Physics, vol. 14, pp. 9558–9573, 2012.
[29] P. Bogusławski, E. L. Briggs, and J. Bernholc, “Amphoteric properties of substitutional carbon impurity in GaN and AlN,” Applied Physics Letters, vol. 69, no. 2, pp. 233–235, 1996.
[30] C. H. Seager, A. F. Wright, J. Yu, and W. Götz, “Role of carbon in GaN,” Journal of Applied Physics, vol. 92, no. 11, pp. 6553–6560, 2002.
[31] A. F. Wright, “Substitutional and interstitial carbon in wurtzite GaN,” Journal of Applied Physics, vol. 92, no. 5, pp. 2575–2585, 2002.
[32] D. V. Lang, “Deep–level transient spectroscopy: A new method to characterize traps in semiconductors,” Journal of Applied Physics, vol. 45, no. 7, pp. 3023–3032, 1974.
[33] A. Chantre, G. Vincent, and D. Bois, “Deep–level optical spectroscopy in GaAs,” Physical Review B, vol. 23, pp. 5335–5359, May 1981.
[34] A. M. Armstrong, “Investigation of deep level defects in GaN:C, GaN:Mg and pseudomorphic AlGaN/GaN films,” Ph.D. dissertation, Ohio State University, 2006.
[35] A. R. Arehart, “Investigation of electrically active defects in GaN, AlGaN, and AlGaN/GaN high electron mobility transistors,” Ph.D. dissertation, Ohio State University, 2009.
[36] Z. Q. Fang, B. Claflin, D. C. Look, D. S. Green, and R. Vetury, “Deep traps in AlGaN/GaN heterostructures studied by deep level transient spectroscopy: Effect of carbon concentration in GaN buffer layers,” Journal of Applied Physics, vol. 108, no. 6, 2010.
[37] A. R. Arehart, A. A. Allerman, and S. A. Ringel, “Electrical characterization of n–type AlGaN Schottky diodes,” Journal of Applied Physics, vol. 109, no. 11, p. 114506, 2011.
[38] E. H. Nicollian and J. R. Brews, MOS physics and technology. Wiley Interscience Publications, 1982.
[39] X. Liu, H. C. Chin, L. S. Tan, and Y. C. Yeo, “In situ surface passivation of gallium nitride for metal–organic chemical vapor deposition of high–permittivity gate dielectric,” IEEE Transactions on Electron Devices, vol. 58, no. 1, pp. 95–102, Jan 2011.
[40] B. L. Swenson and U. K. Mishra, “Photoassisted high–frequency capacitance–voltage characterization of the SiN/GaN interface,” Journal of Applied Physics, vol. 106, no. 6, p. 064902, 2009.
[41] T. Marron, S. Takashima, Z. Li, and T. P. Chow, “Impact of annealing on ALD AlO gate dielectric for GaN MOS devices,” Physica Status Solidi C, vol. 9, no. 3-4, pp. 907–910, 2012.
[42] M. Miczek, C. Mizue, T. Hashizume, and B. Adamowicz, “Effects of interface states and temperature on the C–V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors,” Journal of Applied Physics, vol. 103, no. 10, p. 104510, 2008.
[43] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, “Capacitance–voltage characteristics of AlO/AlGaN/GaN structures and state density distribution at AlO/AlGaN interface,” Japanese Journal of Applied Physics, vol. 50, p. 021001, 2011.
[44] H. A. Shih, M. Kudo, and T. K. Suzuki, “Analysis of AlN/AlGaN/GaN metal–insulator–semiconductor structure by using capacitance–frequency–temperature mapping,” Applied Physics Letters, vol. 101, no. 4, pp. 0 435 011–0 435 014, 2012.
[45] R. Yeluri, B. L. Swenson, and U. K. Mishra, “Interface states at the SiN/AlGaN interface on GaN heterojunctions for Ga– and N–polar material,” Journal of Applied Physics, vol. 111, no. 4, pp. 0 437 181–5, 2012.
[46] M. Capriotti, P. Lagger, C. Fleury, M. Oposich, O. Bethge, C. Ostermaier, G. Strasser, and D. Pogany, “Modeling small–signal response of GaN–based metal–insulator–semiconductor high electron mobility transistor gate stack in spill–over regime: effect of barrier resistance and interface states,” Journal of Applied Physics, vol. 117, no. 2, 2015.
[47] P. Lagger, M. Reiner, D. Pogany, and C. Ostermaier, “Comprehensive study of the complex dynamics of forward bias induced threshold voltage drifts in GaN based MIS–HEMTs by stress/recovery experiments,” IEEE Transactions on Electron Devices, vol. 61, no. 4, pp. 1022–1030, April 2014.
[48] A. Guo and J. A. del Alamo, “Positive–bias temperature instability (PBTI) of GaN MOSFETs,” in IEEE International Reliability Physics Symposium, April 2015, pp. 6C.5.1–6C.5.7.
[49] M. Tapajna, R. J. T. Simms, M. Faqir, M. Kuball, Y. Pei, and U. K. Mishra, “Identification of electronic traps in AlGaN/GaN HEMTs using UV light–assisted trapping analysis,” in IEEE International Reliability Physics Symposium, May 2010, pp. 152–155.
[50] G. Koley, V. Tilak, L. Eastman, and M. Spencer, “Slow transients observed in AlGaN/GaN HFETs: effects of SiN passivation and UV illumination,” IEEE Transactions on Electron Devices, vol. 50, no. 4, pp. 886–893, april 2003.
[51] P. Lagger, P. Steinschifter, M. Reiner, M. Stadtmüller, G. Denifl, A. Naumann, J. Müller, L. Wilde, J. Sundqvist, D. Pogany, and C. Ostermaier, “Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal–insulator–seminconductor structures under forward gate bias stress,” Applied Physics Letters, vol. 105, no. 3, p. 033512, 2014.
[52] P. Lagger, C. Ostermaier, G. Pobegen, and D. Pogany, “Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs,” in International Electron Device Meeting, 2012, pp. 13.1.1–13.1.4.
[53] B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, P. J. Roussel, and G. Groeseneken, “NBTI from the perspective of defect states with widely distributed time scales,” in IEEE International Reliability Physics Symposium, April 2009, pp. 55–60.
[54] M. Reiner, P. Lagger, G. Prechtl, P. Steinschifter, R. Pietschnig, D. Pogany, and C. Ostermaier, “Modification of native surface donor states in AlGaN/GaN MIS–HEMTs by fluorination: Perspective for defect engineering,” in IEEE International Electron Device Meeting, 2015, pp. 35.5.1–35.5.4.
[55] S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, “Substrates for epitaxy of gallium nitride: new materials and techniques,” Reviews on Advanced Materials Science, vol. 17, pp. 1–32, 2008.
[56] M. N. Polyanskiy, “Refractive index database,” http://refractiveindex.info, accessed June 2016.
[57] HF2 User Manual, Zurich Instruments AG, Revision 30817, June 2015.
[58] Agilent Impedance Measurement Handbook, 4th ed., Agilent Technologies Inc., September 2013.
[59] Spectral Irradiance, Newport Corporation, Oriel Product Training, 2006.
[60] Monochromators and Spectrographs, Newport Corporation, Oriel Product Training, 2006.
[61] Fiber Optics, Newport Corporation, Photonics Technical Note Nr. 21, 2006.
[62] Thorlabs SM1PD2A Photodiode specifications sheet, Thorlabs, Rev. D, November 2012.
[63] E. H. Nicollian and A. Goetzberger, “The Si–SiO interface: Electrical properties as determined by the metal–insulator–silicon conductance technique,” The Bell System Technical Journal, vol. XLVI, no. 6, pp. 1055–1133, July–August 1966.
[64] H. El-Sissi and R. S. C. Cobbold, “Numerical calculation of the ideal C/V characteristics of nonuniformly doped MOS capacitors,” Electronics Letters, vol. 9, pp. 594–596, 1973.
[65] L. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal–oxide–silicon diodes,” Solid-State Electronics, vol. 5, no. 5, pp. 285–299, 1962.
[66] R. Engel-Herbert, Y. Hwang, and S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces,” Journal of Applied Physics, vol. 108, no. 12, p. 124101, 2010.
[67] R. Stradiotto, G. Pobegen, C. Ostermaier, and T. Grasser, “Characterization of charge trapping phenomena at III–N/dielectric interfaces,” Solid-State Electronics, vol. 125, pp. 142–153, 2016, extended papers selected from ESSDERC 2015.
[68] E. Bury, B. Kaczer, H. Arimura, M. Luque, L. Ragnarsson, P. Roussel, A. Veloso, S. Chew, M. Togo, T. Schram, and G. Groeseneken, “Reliability in gate first and gate last ultra–thin–EOT gate stacks assessed with CV–eMSM BTI characterization,” in IEEE International Reliability Physics Symposium, April 2013, pp. GD.3.1–GD.3.5.
[69] T. Grasser, P.-J. Wagner, P. Hehenberger, W. Goes, and B. Kaczer, “A rigorous study of measurement techniques for negative bias temperature instability,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 526–535, 2008.
[70] H. Reisinger, U. Brunner, W. Heinrigs, W. Gustin, and C. Schlünder, “A comparison of fast methods for measuring NBTI degradation,” IEEE Transactions on Device and Materials Reliability, vol. 7, no. 4, pp. 531–539, 2007.
[71] B. Kaczer, T. Grasser, P. J. Roussel, J. Martin-Martinez, R. O’Connor, B. J. O’Sullivan, and G. Groeseneken, “Ubiquitous relaxation in BTI stressing – new evaluation and insights,” in Proceedings of the International Reliability Physics Symposium, 2008, pp. 20–27.
[72] G. Pobegen and T. Grasser, “Efficient characterization of threshold voltage instabilities in SiC nMOSFETs using the concept of capture-emission-time maps,” Materials Science Forum, vol. 740–742, pp. 757–760, 2013.
[73] T. Aichinger, M. Nelhiebel, S. Einspieler, and T. Grasser, “In situ polyheater – A reliable tool for performing fast and defined temperature switches on chip,” IEEE Transactions on Device and Materials Reliability, vol. 10, pp. 3–8, 3 2010.
[74] W. Shockley and W. T. Read, “Statistics of the recombination of holes and electrons,” Physical Review, vol. 87, pp. 835–842, 1952.
[75] R. N. Hall, “Electron–hole recombination in germanium,” Physical Review, vol. 87, pp. 387–387, 1952.
[76] K. Huang and A. Rhys, “Theory of light absorption and non–radiative transitions in F–centres,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 204, no. 1078, pp. 406–423, 1950.
[77] C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Physical Review B, vol. 15, pp. 989–1016, Jan 1977.
[78] W. B. Fowler, J. K. Rudra, M. E. Zvanut, and F. J. Feigl, “Hysteresis and Franck–Condon relaxation in insulator–semiconductor tunneling,” Physical Review B, vol. 41, pp. 8313–8317, Apr 1990.
[79] T. Grasser, “Analytic modeling of the bias temperature instability using capture/emission time maps,” in IEEE International Electron Device Meeting, 2011, pp. 27.4.1–27.4.4.
[80] T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, “The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability.” in IEEE International Reliability Physics Symposium, 2010, pp. 2A.2.1–2A.2.10.
[81] M. Kirton and M. Uren, “Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/f) noise,” Advances in Physics, vol. 38, no. 4, pp. 367–486, 1989.
[82] G. Pobegen, T. Aichinger, M. Nelhiebel, and T. Grasser, “Understanding temperature acceleration for NBTI,” in IEEE International Electron Device Meeting, 2011, pp. 27.3.1–27.3.4.
[83] G. Pobegen and T. Grasser, “On the distribution of NBTI time constants on a long, temperature accelerated time scale,” IEEE Transactions on Electron Devices, vol. 60, no. 7, pp. 2148–2155, 2013.
[84] A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena,” Review of Scientific Instruments, vol. 70, no. 2, pp. 1233–1257, 1999.
[85] W. Von der Linden, “Maximum-entropy data analysis,” Applied Physics A, vol. 60, no. 2, pp. 155–165, 1995.
[86] P. J. Steinbach, R. Ionescu, and C. R. Matthews, “Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: Application to protein folding,” Biophysical Journal, vol. 62, pp. 2244–2255, 2002.
[87] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, pp. 620–630, May 1957.
[88] H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC– and AC–stress,” in IEEE International Reliability Physics Symposium, 2010, pp. 2A.1.1–2A.1.9.
[89] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, “Time–dependent defect spectroscopy for characterization of border traps in metal–oxide–semiconductor transistors,” Physical Review B, vol. 82, p. 245318, Dec 2010.
[90] W. Goes, Y. Wimmer, T. El-Sayed, G. Rzepa, M. Jech, A. L. Shluger, and T. Grasser, “Modeling of oxide defects in semiconductor devices: Connecting first–principles with rate equations,” 2016, (to be published).
[91] W. Primak, “Kinetics of processes distributed in activation energy,” Physical Review, vol. 100, pp. 1677–1689, 1955.
[92] G. Pobegen, “Degradation of electrical parameters of power semiconductor devices – Process influences and modeling,” Ph.D. dissertation, Vienna University of Technology, 2013.
[93] S. Makram-Ebeid and M. Lannoo, “Quantum model for phonon–assisted tunnel ionization of deep levels in a semiconductor,” Physical Review B, vol. 25, pp. 6406–6424, May 1982.
[94] D. G. Truhlar and A. Kohen, “Convex arrhenius plots and their interpretation,” Proceedings of the National Academy of Sciences, vol. 98, no. 3, pp. 848–851, 2001.
[95] V. Huard, M. Denais, and C. Parthasarathy, “NBTI degradation: From physical mechanisms to modelling,” Microelectronics Reliability, vol. 46, no. 1, pp. 1–23, 2006.
[96] R. Stradiotto, G. Pobegen, C. Ostermaier, M. Waltl, A. Grill, and T. Grasser, “Characterization of interface defects with distributed activation energies in GaN–based MIS–HEMTs,” IEEE Transactions on Electron Devices, 2016, in review.
[97] M. Reiner, G. Denifl, M. Stadtmueller, R. Pietschnig, and C. Ostermaier, “Through–layer XPS investigations of the SiN/AlGaN interface,” Physica Status Solidi B, 2016, available online: http://dx.doi.org/10.1002/pssb.201600143.
[98] M. Reiner, R. Pietschnig, and C. Ostermaier, “Tracking the effect of adatom electronegativity on systematically modified AlGaN/GaN schottky interfaces,” ACS Applied Materials and Interfaces, vol. 7, no. 41, pp. 23.124–23.131, 2015.
[99] G. Lucovsky, “On the photoionization of deep impurity centers in semiconductors,” Solid State Communications, vol. 3, pp. 299–302, 1965.
[100] R. Zeisel, “Optoelectronic properties of defects in diamond and AlGaN alloys,” Ph.D. dissertation, Munich University of Technology, 2001.
[101] W. Goetz, N. M. Johnson, and D. P. Bour, “Deep level defects in Mg–doped, p–type GaN grown by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 68, p. 3470, 1996.
[102] H. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x–ray region: Mg, Al, Cu, Ag, Au, Bi, C, and AlO,” Journal of the Optical Society of America, vol. 65, no. 6, pp. 742–744, Jun 1975.
[103] L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films, vol. 520, no. 1, pp. 501–509, 2011.
[104] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical–cavity optoelectronic devices,” Applied Optics, vol. 37, no. 22, pp. 5271–5283, Aug 1998.
[105] A. R. Arehart, A. C. Malonis, C. Poblenz, Y. Pei, J. S. Speck, U. K. Mishra, and S. A. Ringel, “Next generation defect characterization in nitride HEMTs,” Physica Status Solidi C, vol. 8, no. 7–8, pp. 2242–2244, 2011.
[106] A. Sasikumar, A. Arehart, S. A. Ringel, S. Kaun, M. H. Wong, U. K. Mishra, and J. S. Speck, “Direct correlation between specific trap formation and electric stress–induced degradation in MBE–grown AlGaN/GaN HEMTs,” in Reliability Physics Symposium (IRPS), 2012 IEEE International, April 2012, pp. 2C.3.1–2C.3.6.