(image) (image) [ Previous ] [ ]

7 Summary and Outlook

Numerical methods for the 3D simulation of selective epitaxy and anisotropic wet etching were presented in the context of process TCAD. The materials which are patterned with these processes are of crystalline nature, which results in inherently anisotropic processes. The resulting formation of crystal facets gives rise to complex 3D semiconductor topographies and needs to be captured by simulation tools to support semiconductor device fabrication. Modeling approaches ranging from atomistic to continuum were reviewed and the excellent capabilities of topography-focused continuum models based on the level-set method were identified.

Inherently anisotropic processes described with the level-set method pose several challenges regarding the computational treatment. First, the emerging crystal facets need to be resolved with high spatial accuracy (no artificial rounding). Second, the sharp edges of facets can cause abrupt changes in the level-set function. Since the level-set equation (which determines the surface evolution) is a hyperbolic partial differential equation, abrupt numerical changes of the level-set function lead to the excitation of artificial numerical waves. This leads to instable surface propagation and thus must be avoided. Third, the conventional description of multiple materials with a stack of level-set functions introduces numerical inaccuracies which can result in incorrectly imposed local surface convexity. Due to the sensitivity of inherently anisotropic process to the local topography, robust growth or etch simulations are not ensured.

In this thesis, a stable and robust level-set method which overcomes theses challenges was presented. Originating from the viscosity solution of the level-set equation and monotonicity considerations, a finite difference Stencil Lax-Friedrichs scheme was derived. In particular, the scheme provides optimized front propagation for crystal orientation-dependent etch and growth models, which is achieved by determining the appropriate numerical dissipation coefficients and size of the discrete time step. Most importantly, no heuristic numerical parameters are required, facilitating the practical use. Furthermore, the deposition top-layer method for selective epitaxial growth in multi-material structures was proposed, which is based on Boolean operations on a stack of level-sets. The capabilities of these techniques were assessed in typical epitaxy and etching configurations, demonstrating that the Stencil Lax-Friedrichs scheme and deposition top-layer method enable reliable 3D topography simulations with crystal orientation-dependent growth or etch rate models.

These numerical methods were applied for the simulation of epitaxy and anisotropic wet etching steps in a variety of state-of-the-art semiconductor fabrication processes. The applications involve several materials ( \( \silicon \), SiGe, 3C-SiC, and sapphire) and processes including source-drain engineering of MOSFETs, SiGe fins, and anisotropic wet etching of sapphire substrates.

In order to account for the different crystal symmetry exhibited by these materials, a growth and etch interpolation procedure which respects the underlying crystal symmetry operations was introduced. In particular, the ideas of the traditional Hubbard interpolation which is only applicable for octahedral symmetry (as exhibited by \( \silicon \) and SiGe) were generalized to allow for interpolation of growth and etch rates in tetrahedral and trigonal symmetry. Thus, simulations of crystal orientation-dependent processing of the tetrahedral 3C-SiC and the trigonal sapphire were enabled.

Furthermore, the intricate wet etching anisotropy of sapphire was modeled with a parametrization that is well-suited to reflect the multiple minima and maxima of sapphire’s etch rate distribution. Hence, a comprehensive sapphire wet etching model for different etchants and etch temperatures was proposed. All simulation results were compared with experimental observations (i.e., SEM, TEM, and AFM data) from the literature, showing accurate congruence. Thus, the capability of level-set based continuum modeling approach was demonstrated.

The merits of the continuum modeling were further utilized by combining process and device TCAD. To set the stage, the impact of the process parameters annealing time and temperature of the post-implantation annealing of 4H-SiC DMOSFETs on the device characteristics was highlighted. The annealing conditions cause significant threshold voltage shifts. These were quantified and the range of desirable annealing parameters was identified.

A similar investigation was performed for the highly complex topographies of wet etched sapphire substrates which are essential for GaN-based LEDs. The continuum level-set model for anisotropic wet etching of sapphire was employed to virtually fabricate LED structures which were subsequently characterized with ray-tracing calculations to determine the light extraction efficiency. The simulations have shown that optimization of etch time and temperature result in an up to 15% increase in efficiency of wet etched PSSs compared with conical substrate patterns.

Even though the capabilities of the proposed Stencil Lax-Friedrichs scheme and the deposition top-layer method were demonstrated in this thesis, future work should address the performance and optimizations for calculations on adaptive (i.e., locally refined) computational grids. Furthermore, an extension of the presented Stencil Lax-Friedrichs scheme to flux-dependent processes would be of interest. For instance, the incorporation of ray-tracing-based flux calculations is important for the heteroepitaxy of 3C-SiC on \( \silicon \) pillars, because ray-tracing allows to account for particle transport and shading effects in a general way.

As far as modeling of epitaxy and etching processes is concerned, further investigations might consider more growth conditions and etchant mixtures. For instance, in the case of anisotropic wet etching, the impact of alcohol supplements is known to significantly alter the etch anisotropy. Likewise, reactor parameters (e.g., precursor flow) influence epitaxial growth rates. By considering effects of that kind, comprehensive growth and etch rate models can be developed.

Furthermore, the combination of process simulation and light extraction efficiency ray-tracing can be further pursued by considering different initial geometries (e.g., hemispherical or cylindrical patterned sapphire substrates). The impact of various etchants can also be investigated for alternative LED designs like flip-chip LEDs.

Bibliography

  • [1] T. Ma, V. Moroz, R. Borges, K. E. Sayed, P. Asenov, and A. Asenov. “(Invited) Future Perspectives of TCAD in the Industry”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2016, pp. 335–339. doi: 10.1109/SISPAD.2016.7605215.

  • [2] C. K. Maiti. Introducing Technology Computer-Aided Design (TCAD): Fundamentals, Simulations, and Applications. Pan Stanford Publishing, 2017. isbn: 9789814745512. doi: 10.1201/9781315364506.

  • [3] J. Wu and C. H. Diaz. “Expanding Role of Predictive TCAD in Advanced Technology Development”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2013, pp. 167–171. doi: 10.1109/SISPAD.2013.6650601.

  • [4] M. Lundstrom. Fundamentals of Carrier Transport. Cambridge University Press, 2000. isbn: 9780511618611. doi: 10.1017/CBO9780511618611.

  • [5] X. Li. Optoelectronic Devices: Design, Modeling, and Simulation. Cambridge University Press, 2009. isbn: 9780511581144. doi: 10.1017/CBO9780511581144.

  • [6] N. Lobontiu. Dynamics of Microelectromechanical Systems. Vol. 17. Springer, 2007. isbn: 978-0-387-68195-5. doi: 10.1007/978-0-387-68195-5.

  • [7] V. Vargiamidis, M. Thesberg, and N. Neophytou. “Theoretical Model for the Seebeck Coefficient in Superlattice Materials with Energy Relaxation”. Journal of Applied Physics 126 (5) (2019), p. 055105. doi: 10.1063/1.5108607.

  • [8] A. Ababneh, U. Schmid, J. Hernando, J. Sánchez-Rojas, and H. Seidel. “The Influence of Sputter Deposition Parameters on Piezoelectric and Mechanical Properties of AlN Thin Films”. Materials Science and Engineering: B 172 (3) (2010), pp. 253–258. doi: 10.1016/j.mseb.2010.05.026.

  • [9] R. Ghodssi and P. Lin. MEMS Materials and Processes Handbook. Vol. 1. Springer, 2011. isbn: 9780387473161. doi: 10.1007/978-0-387-47318-5.

  • [10] H. Geng. Semiconductor Manufacturing Handbook. McGraw-Hill Education, 2017. isbn: 9781259587696.

  • [11] H. Seidel. “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”. Journal of The Electrochemical Society 137 (11) (1990), p. 3612. doi: 10.1149/1.2086277.

  • [12] K. Nojiri. Dry Etching Technology for Semiconductors. Springer, 2015. isbn: 9783319102948. doi: 10.1007/978-3-319-10295-5.

  • [13] A. Yanguas-Gil and J. W. Elam. “Simple Model for Atomic Layer Deposition Precursor Reaction and Transport in a Viscous-Flow Tubular Reactor”. Journal of Vacuum Science & Technology A 30 (1) (2012), 01A159. doi: 10.1116/1.3670396.

  • [14] H. Ni, S. Lu, and C. Chen. “Modeling and Simulation of Silicon Epitaxial Growth in Siemens CVD Reactor”. Journal of Crystal Growth 404 (2014), pp. 89–99. doi: 10.1016/j.jcrysgro.2014.07.006.

  • [15] S. Huang, C. Huard, S. Shim, S. K. Nam, I.-C. Song, S. Lu, and M. J. Kushner. “Plasma Etching of High Aspect Ratio Features in SiO2 Using Ar/C4 F8 /O2 Mixtures: A Computational Investigation”. Journal of Vacuum Science & Technology A 37 (3) (2019), p. 031304. doi: 10.1116/1.5090606.

  • [16] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003. isbn: 9780387954820. doi: 10.1007/b98879.

  • [17] H. Bihs, A. Kamath, M. Alagan Chella, A. Aggarwal, and O. A. Arntsen. “A New Level Set Numerical Wave Tank with Improved Density Interpolation for Complex Wave Hydrodynamics”. Computers & Fluids 140 (2016), pp. 191–208. doi: 10.1016/j.compfluid.2016.09.012.

  • [18] F. Gibou, R. Fedkiw, and S. Osher. “A Review of Level-Set Methods and Some Recent Applications”. Journal of Computational Physics 353 (2018), pp. 82–109. doi: 10.1016/j.jcp.2017.10.006.

  • [19] L.-T. Cheng, H. Liu, and S. Osher. “Computational High-Frequency Wave Propogation Using the Level-Set Method with Applications to the Semi-Classical Limit of the Schrödinger Equations”. Communications in Mathematical Sciences 1 (3) (2003), pp. 593 –621. doi: 10.4310/CMS.2003.v1.n3.a10.

  • [20] U. W. Pohl. Epitaxy of Semiconductors. Physics and Fabrication of Heterostructures. Springer, 2020. doi: 10.1007/978-3-030-43869-2.

  • [21] S. Barraud, V. Lapras, M. P. Samson, L. Gaben, L. Grenouillet, V. Maffini-Alvaro, Y. Morand, J. Daranlot, N. Rambal, B. Previtalli, S. Reboh, C. Tabone, R. Coquand, E. Augendre, O. Rozeau, J. M. Hartmann, C. Vizioz, C. Arvet, P. Pimenta-Barros, N. Posseme, V. Loup, C. Comboroure, C. Euvrard, V. Balan, I. Tinti, G. Audoit, N. Bernier, D. Cooper, Z. Saghi, F. Allain, A. Toffoli, O. Faynot, and M. Vinet. “Vertically Stacked-NanoWires MOSFETs in a Replacement Metal Gate Process with Inner Spacer and SiGe Source/Drain”. Proceedings of the IEEE International Electron Devices Meeting (IEDM). 2016, pp. 17.6.1–17.6.4. doi: 10.1109/IEDM.2016.7838441.

  • [22] S. Barraud, B. Previtali, V. Lapras, C. Vizioz, J. Hartmann, S. Martinie, J. Lacord, M. Cassé, L. Dourthe, V. Loup, G. Romano, N. Rambal, Z. Chalupa, N. Bernier, G. Audoit, A. Jannaud, V. Delaye, V. Balan, O. Rozeau, T. Ernst, and M. Vinet. “Tunability of Parasitic Channel in Gate-All-Around Stacked Nanosheets”. Proceedings of the IEEE International Electron Devices Meeting (IEDM). 2018, pp. 21.3.1–21.3.4. doi: 10.1109/IEDM.2018.8614507.

  • [23] G. Wang, C. Qin, H. Yin, J. Luo, N. Duan, P. Yang, X. Gao, T. Yang, J. Li, J. Yan, H. Zhu, W. Wang, D. Chen, T. Ye, C. Zhao, and H. H. Radamson. “Study of SiGe Selective Epitaxial Process Integration with High-k and Metal Gate for 16/14 nm Nodes FinFET Technology”. Microelectronic Engineering 163 (2016), pp. 49–54. doi: 10.1016/j.mee.2016.06.002.

  • [24] J. Peng, Y. Qi, H.-C. Lo, P. Zhao, C. Yong, J. Yan, X. Dou, H. Zhan, Y. Shen, S. Regonda, O. Hu, H. Yu, M. Joshi, C. Adams, R. Carter, and S. Samavedam. “Source/Drain eSiGe Engineering for FinFET Technology”. Semiconductor Science and Technology 32 (9) (2017), p. 094004. doi: 10.1088/1361-6641/aa7d3f.

  • [25] A. Toifl, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “The Level-Set Method for Multi-Material Wet Etching and Non-Planar Selective Epitaxy”. IEEE Access 8 (2020), pp. 115406–115422. doi: 10.1109/ACCESS.2020.3004136.

  • [26] J. A. Sethian and D. Adalsteinsson. “An Overview of Level Set Methods for Etching, Deposition, and Lithography Development”. IEEE Transactions on Semiconductor Manufacturing 10 (1) (1997), pp. 167–184. doi: 10.1109/66.554505.

  • [27] V. Suvorov, A. Hössinger, Z. Djurić and N. Ljepojevic. “A Novel Approach to Three-Dimensional Semiconductor Process Simulation: Application to Thermal Oxidation”. Journal of Computational Electronics 5 (4) (2006), pp. 291–295. doi: 10.1007/s10825-006-0003-z.

  • [28] B. Radjenović J. K. Lee, and M. Radmilović-Radjenović “Sparse Field Level Set Method for Non-Convex Hamiltonians in 3D Plasma Etching Profile Simulations”. Computer Physics Communications 174 (2) (2006), pp. 127–132. doi: 10.1016/j.cpc.2005.09.010.

  • [29] Y. Shen, N. Jia, N. Wong, and E. Y. Lam. “Robust Level-Set-Based Inverse Lithography”. Optics Express 19 (6) (2011), pp. 5511–5521. doi: 10.1364/OE.19.005511.

  • [30] X. Klemenschits, S. Selberherr, and L. Filipovic. “Modeling of Gate Stack Patterning for Advanced Technology Nodes: A Review”. Micromachines 9 (12) (2018). doi: 10.3390/mi9120631.

  • [31] P. Mistani, A. Guittet, D. Bochkov, J. Schneider, D. Margetis, C. Ratsch, and F. Gibou. “The Island Dynamics Model on Parallel Quadtree Grids”. Journal of Computational Physics 361 (2018), pp. 150–166. doi: 10.1016/j.jcp.2018.01.054.

  • [32] H. Yasuda, M. Orii, K. Izui, T. Yamada, S. Nishiwaki, and M. Suzuki. “A Wavelength Selective Emitter Design Method Using Hyperbolic Tangent Level Set-Based Shape Optimization”. Optics Communications 463 (2020), p. 125405. doi: 10.1016/j.optcom.2020.125405.

  • [33] B. Radjenović and M. Radmilović-Radjenović “3D Simulations of the Profile Evolution During Anisotropic Wet Etching of Silicon”. Thin Solid Films 517 (14) (2009), pp. 4233–4237. doi: 10.1016/j.tsf.2009.02.007.

  • [34] C. Montoliu, N. Ferrando, M. Gosálvez, J. Cerdá, and R. Colom. “Implementation and Evaluation of the Level Set Method: Towards Efficient and Accurate Simulation of Wet Etching for Microengineering Applications”. Computer Physics Communications 184 (10) (2013), pp. 2299 –2309. doi: 10.1016/j.cpc.2013.05.016.

  • [35] A. Zhmakin. “Enhancement of Light Extraction from Light Emitting Diodes”. Physics Reports 498 (4) (2011), pp. 189–241. doi: 10.1016/j.physrep.2010.11.001.

  • [36] J. E. Ayers, T. Kujofsa, P. Rago, and J. Raphael. Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization. CRC press, 2016. doi: 10.1201/9781315372440.

  • [37] J. H. Ryou and W. Lee. “GaN on Sapphire Substrates for Visible Light-Emitting Diodes”. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications: Second Edition. Elsevier, 2018, pp. 43–78. doi: 10.1016/B978-0-08-101942-9.00003-4.

  • [38] P. Gibart. “Metal Organic Vapour Phase Epitaxy of GaN and Lateral Overgrowth”. Reports on Progress in Physics 67 (5) (2004), pp. 667–715. doi: 10.1088/0034-4885/67/5/r02.

  • [39] A. Yanguas-Gil. Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD, and ALD. Springer, 2017. doi: 10.1007/978-3-319-24672-7.

  • [40] T. Kimoto and J. A. Cooper. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. 2014, pp. 1–538. isbn: 9781118313534. doi: 10.1002/9781118313534.

  • [41] W. Borchardt-Ott. Crystallography. Springer, 2012. isbn: 9783642164514. doi: 10.1007/978-3-642-16452-1.

  • [42] A. Pimpinelli and J. Villain. Physics of Crystal Growth. Collection Alea-Saclay: Monographs and Texts in Statistical Physics. Cambridge University Press, 1998. isbn: 9780511622526. doi: 10.1017/CBO9780511622526.

  • [43] J. A. Venables. Introduction to Surface and Thin Film Processes. Cambridge University Press, 2000. isbn: 9780511755651. doi: 10.1017/CBO9780511755651.

  • [44] R. J. Jaccodine. “Use of Modified Free Energy Theorems to Predict Equilibrium Growing and Etching Shapes”. Journal of Applied Physics 33 (8) (1962), pp. 2643–2647. doi: 10.1063/1.1729036.

  • [45] O. Pierre-Louis. “Dynamics of Crystal Steps”. Comptes Rendus Physique 6 (1) (2005), pp. 11–21. doi: 10.1016/j.crhy.2004.11.005.

  • [46] W. K. Burton, N Cabrera, F. C. Frank, and N. Jun. “The Growth of Crystals and the Equilibrium Structure of their Surfaces”. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 243 (866) (1951), pp. 299–358. doi: 10.1098/rsta.1951.0006.

  • [47] R. L. Schwoebel and E. J. Shipsey. “Step Motion on Crystal Surfaces”. Journal of Applied Physics 37 (10) (1966), pp. 3682–3686. doi: 10.1063/1.1707904.

  • [48] G. Bales and A. Zangwill. “Morphological Instability of a Terrace Edge During Step-Flow Growth”. Physical Review B 41 (9) (1990), pp. 5500–5508. doi: 10.1103/PhysRevB.41.5500.

  • [49] B. Li, A. Rätz, and A. Voigt. “Stability of a Circular Epitaxial Island”. Physica D: Nonlinear Phenomena 198 (3-4) (2004), pp. 231–247. doi: 10.1016/j.physd.2004.08.029.

  • [50] B. Voigtländer. “Fundamental Processes in Si/Si and Ge/Si Epitaxy Studied by Scanning Tunneling Microscopy During Growth”. Surface Science Reports 43 (5) (2001), pp. 127–254. doi: 10.1016/S0167-5729(01)00012-7.

  • [51] R. Bergamaschini, M. Salvalaglio, R. Backofen, A. Voigt, and F. Montalenti. “Continuum Modelling of Semiconductor Heteroepitaxy: An Applied Perspective”. Advances in Physics: X 1 (3) (2016), pp. 331–367. doi: 10.1080/23746149.2016.1181986.

  • [52] H. Jang, S. Koo, D.-S. Byeon, Y. Choi, and D.-H. Ko. “Facet Evolution of Selectively Grown Epitaxial Si1−x Gex Fin Layers in sub-100 nm Trench Arrays”. Journal of Crystal Growth 532 (2020), p. 125429. doi: 10.1016/j.jcrysgro.2019.125429.

  • [53] D. Dutartre, B. Seiss, Y. Campidelli, D. Pellissier-Tanon, D. Barge, and R. Pantel. “Faceting and Nanostructure Effects in Si and SiGe Epitaxy”. Thin Solid Films 520 (8) (2012), pp. 3163–3169. doi: 10.1016/j.tsf.2011.10.115.

  • [54] J. Cahn and W. Carter. “Crystal Shapes and Phase Equilibria: A Common Mathematical Basis”. Metallurgical and Materials Transactions A 27 (6) (1996), pp. 1431–1440. doi: 10.1007/BF02649804.

  • [55] M. Albani, S. Assali, M. A. Verheijen, S. Koelling, R. Bergamaschini, F. Pezzoli, E. P. A. M. Bakkers, and L. Miglio. “Critical Strain for Sn Incorporation into Spontaneously Graded Ge/GeSn Core/Shell Nanowires”. Nanoscale 10 (15 2018), pp. 7250–7256. doi: 10.1039/C7NR09568F.

  • [56] Q. Sun, C. D. Yerino, B. Leung, J. Han, and M. E. Coltrin. “Understanding and Controlling Heteroepitaxy with the Kinetic Wulff Plot: A Case Study with GaN”. Journal of Applied Physics 110 (5) (2011), p. 053517. doi: 10.1063/1.3632073.

  • [57] D. Dutartre, A. Talbot, and N. Loubet. “Facet Propagation in Si and SiGe Epitaxy or Etching”. ECS Journal of Solid State Science and Technology 3 (7) (2006), pp. 473–487. doi: 10.1149/1.2355845.

  • [58] A. Hikavyy, R. Loo, L. Witters, S. Takeoka, J. Geypen, B. Brijs, C. Merckling, M. Caymax, and J. Dekoster. “SiGe SEG Growth for Buried Channels p-MOS Devices”. ECS Transactions 25 (7) (2009), pp. 201–210. doi: 10.1149/1.3203957.

  • [59] R. Loo, M. Caymax, I. Peytier, S. Decoutere, N. Collaert, P. Verheyen, W. Vandervorst, and K. D. Meyer. “Successful Selective Epitaxial Si1−x Gex Deposition Process for HBT-BiCMOS and High Mobility Heterojunction pMOS Applications”. Journal of The Electrochemical Society 150 (10) (2003), G638. doi: 10.1149/1.1604789.

  • [60] S. Dhar. “Analytical Mobility Models for Strained Silicon-Based Devices”. Doctoral Dissertation. TU Wien, Institute for Microelectronics, 2007. url: https://www.iue.tuwien.ac.at/phd/dhar/.

  • [61] J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley. “Study of the Defect Elimination Mechanisms in Aspect Ratio Trapping Ge Growth”. Applied Physics Letters 90 (10) (2007), p. 101902. doi: 10.1063/1.2711276.

  • [62] J. W. Evans, P. A. Thiel, and M. C. Bartelt. “Morphological Evolution During Epitaxial Thin Film Growth: Formation of 2D Islands and 3D Mounds”. Surface Science Reports 61 (1-2) (2006), pp. 1–128. doi: 10.1016/j.surfrep.2005.08.004.

  • [63] I. Martin-Bragado, R. Borges, J. P. Balbuena, and M. Jaraiz. “Kinetic Monte Carlo Simulation for Semiconductor Processing: A Review”. Progress in Materials Science 92 (2018), pp. 1–32. doi: 10.1016/j.pmatsci.2017.09.003.

  • [64] J. P. Schneider, D. Margetis, F. Gibou, and C. Ratsch. “An Examination of Scaling Behavior in Unstable Epitaxial Mound Growth via Kinetic Monte Carlo Simulations”. Journal of Physics: Condensed Matter 31 (36) (2019), p. 365301. doi: 10.1088/1361-648x/ab20b3.

  • [65] D. T. Gillespie. “A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions”. Journal of Computational Physics 22 (4) (1976), pp. 403–434. doi: 10.1016/0021-9991(76)90041-3.

  • [66] R. Chen, W. Choi, A. Schmidt, K.-h. Lee, and Y. Park. “A New Kinetic Lattice Monte Carlo Modeling Framework for the Source-Drain Selective Epitaxial Growth Process”. Proceedings of the International Conference of Simulation of Semiconductor Processes and Devices (SISPAD). 2013, pp. 9–12. doi: 10.1109/SISPAD.2013.6650561.

  • [67] I. Martin-Bragado and V. Moroz. “Modeling of {311} Facets Using a Lattice Kinetic Monte Carlo Three-Dimensional Model for Selective Epitaxial Growth of Silicon”. Applied Physics Letters 98 (15) (2011), pp. 98–101. doi: 10.1063/1.3580771.

  • [68] J. P. Balbuena and I. Martin-Bragado. “Lattice Kinetic Monte Carlo Simulation of Epitaxial Growth of Silicon Thin Films in H2 /SiH4 Chemical Vapor Deposition Systems”. Thin Solid Films 634 (2017), pp. 121–133. doi: 10.1016/j.tsf.2017.05.013.

  • [69] D. P. Woodruff. “How Does Your Crystal Grow? A Commentary on Burton, Cabrera and Frank (1951) ‘The Growth of Crystals and the Equilibrium Structure of their Surfaces’”. Philosophical Transactions of the Royal Society A 373 (2039) (2015), p. 20140230. doi: 10.1098/rsta.2014.0230.

  • [70] C. Ratsch, M. F. Gyure, R. E. Caflisch, F. Gibou, M. Petersen, M. Petersen, M. Kang, J. Garcia, D. D. Vvedensky, and D. D. Vvedensky. “Level-Set Method for Island Dynamics in Epitaxial Growth”. Physical Review B - Condensed Matter and Materials Physics 65 (19) (2002), pp. 1954031–19540313. doi: 10.1103/PhysRevB.65.195403.

  • [71] S. Chen, B. Merriman, M. Kang, R. E. Caflisch, C. Ratsch, L. T. Cheng, M. Gyure, R. P. Fedkiw, C. Anderson, and S. Osher. “A Level Set Method for Thin Film Epitaxial Growth”. Journal of Computational Physics 167 (2) (2001), pp. 475–500. doi: 10.1006/jcph.2000.6689.

  • [72] A. Rätz and A. Voigt. “Various Phase-Field Approximations for Epitaxial Growth”. Journal of Crystal Growth 266 (1-3) (2004), pp. 278–282. doi: 10.1016/j.jcrysgro.2004.02.075.

  • [73] Z. Hu, J. S. Lowengrub, S. M. Wise, and A. Voigt. “Phase-Field Modeling of Epitaxial Growth: Applications to Step Trains and Island Dynamics”. Physica D: Nonlinear Phenomena 241 (2) (2012), pp. 77–94. doi: 10.1016/j.physd.2011.09.004.

  • [74] E. Bänsch, F. Haußer, O. Lakkis, B. Li, and A. Voigt. “Finite Element Method for Epitaxial Growth with Attachment-Detachment Kinetics”. Journal of Computational Physics 194 (2) (2004), pp. 409–434. doi: 10.1016/j.jcp.2003.09.029.

  • [75] S. Li and X. Li. “A Boundary Integral Method for Computing the Dynamics of an Epitaxial Island”. SIAM Journal on Scientific Computing 33 (6) (2011), pp. 3282–3302. doi: 10.1137/100814871.

  • [76] M. F. Horstemeyer. “Multiscale Modeling: A Review”. Practical Aspects of Computational Chemistry (2009), pp. 87–135. doi: 10.1007/978-90-481-2687-3_4.

  • [77] Y. Sun, R. Caflisch, and B. Engquist. “A Multiscale Method for Epitaxial Growth”. Multiscale Modeling & Simulation 9 (1) (2011), pp. 335–354. doi: 10.1137/090747749.

  • [78] L.-T. Cheng and E Weinan. “The Heterogeneous Multi-Scale Method for Interface Dynamics”. Contemporary Mathematics 330 (2003), pp. 43–54. doi: 10.1090/conm/330/05883.

  • [79] J. Cahn and J. Taylor. “Overview No. 113 Surface Motion by Surface Diffusion”. Acta Metallurgica et Materialia 42 (4) (1994), pp. 1045–1063. doi: 10.1016/0956-7151(94)90123-6.

  • [80] J. W. Cahn and J. E. Hilliard. “Free Energy of a Nonuniform System. I. Interfacial Free Energy”. The Journal of Chemical Physics 28 (2) (1958), pp. 258–267. doi: 10.1063/1.1744102.

  • [81] L.-Q. Chen. “Phase-Field Models for Microstructure Evolution”. Annual Review of Materials Research 32 (1) (2002), pp. 113–140. doi: 10.1146/annurev.matsci.32.112001.132041.

  • [82] I. Steinbach. “Phase-Field Models in Materials Science”. Modelling and Simulation in Materials Science and Engineering 17 (7) (2009), p. 073001. doi: 10.1088/0965-0393/17/7/073001.

  • [83] M. Masullo, R. Bergamaschini, M. Albani, T. Kreiliger, M. Mauceri, D. Crippa, F. la Via, F. Montalenti, H. von Känel, and L. Miglio. “Growth and Coalescence of 3C-SiC on Si(111) Micro-Pillars by a Phase-Field Approach”. Materials 12 (19) (2019), pp. 1–12. doi: 10.3390/ma12193223.

  • [84] A. Barzaghi, S. Firoozabadi, M. Salvalaglio, R. Bergamaschini, A. Ballabio, A. Beyer, M. Albani, J. Valente, A. Voigt, D. J. Paul, L. Miglio, F. Montalenti, K. Volz, and G. Isella. “Self-Assembly of Nanovoids in Si Microcrystals Epitaxially Grown on Deeply Patterned Substrates”. Crystal Growth and Design 20 (5) (2020), pp. 2914–2920. doi: 10.1021/acs.cgd.9b01312.

  • [85] M. Salvalaglio, M. Bouabdellaoui, M. Bollani, A. Benali, L. Favre, J.-B. Claude, J. Wenger, P. de Anna, F. Intonti, A. Voigt, and M. Abbarchi. “Hyperuniform Monocrystalline Structures by Spinodal Solid-State Dewetting”. Physical Review Letters 125 (12) (2020), p. 126101. doi: 10.1103/physrevlett.125.126101.

  • [86] M. Fujinaga and N. Kotani. “3-D Topography Simulator (3-D MULSS) Based on a Physical Description of Material Topography”. IEEE Transactions on Electron Devices 44 (2) (1997), pp. 226–238. doi: 10.1109/16.557710.

  • [87] M. E. Law. “Grid Adaption Near Moving Boundaries in two Dimensions for IC Process Simulation”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 14 (10) (1995), pp. 1223–1230. doi: 10.1109/43.466338.

  • [88] M. Albani, R. Bergamaschini, M. Salvalaglio, A. Voigt, L. Miglio, and F. Montalenti. “Competition Between Kinetics and Thermodynamics During the Growth of Faceted Crystal by Phase Field Modeling”. Physica Status Solidi (B) 256 (7) (2019), p. 1800518. doi: 10.1002/pssb.201800518.

  • [89] B. W. Batterman. “Hillocks, Pits, and Etch Rate in Germanium Crystals”. Journal of Applied Physics 28 (11) (1957), pp. 1236–1241. doi: 10.1063/1.1722624.

  • [90] M. Köhler. “Isotropic Etching”. Encyclopedia of Microfluidics and Nanofluidics. Springer, 2008, pp. 877–884. isbn: 9780387489988. doi: 10.1007/978-0-387-48998-8_751.

  • [91] K. E. Bean. “Anisotropic Etching of Silicon”. IEEE Transactions on Electron Devices 25 (10) (1978), pp. 1185–1193. doi: 10.1109/T-ED.1978.19250.

  • [92] I. Zubel. “The Model of Etching of (hkl) Planes in Monocrystalline Silicon”. Journal of The Electrochemical Society 150 (6) (2003), p. C391. doi: 10.1149/1.1568940.

  • [93] I. Zubel. “Anisotropic Etching of Si”. Journal of Micromechanics and Microengineering 29 (9) (2019), p. 093002. doi: 10.1088/1361-6439/ab2b8d.

  • [94] K. Kamata, R. Ozaki, T. Yada, R. Hasunuma, and K. Yamabe. “Control of Atomic Step Shape and Step Flow Speed Using the Effect of Si Oxidized Films”. Hyomen Kagaku 30 (2009), pp. 422–426. doi: 10.1380/JSSSJ.30.422.

  • [95] M. A. Gosálvez, Y. Xing, K. Sato, and R. M. Nieminen. “Atomistic Methods for the Simulation of Evolving Surfaces”. Journal of Micromechanics and Microengineering 18 (5) (2008), p. 055029. doi: 10.1088/0960-1317/18/5/055029.

  • [96] I. Zubel. “Effect of Cations on Silicon Anisotropic Etching Process in Solutions Containing TMAH and TMAH with Tensioactive Compounds”. Sensors and Actuators A: Physical 303 (2020), p. 111829. doi: 10.1016/j.sna.2020.111829.

  • [97] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, and S. P. Kilcoyne. “Wet Chemical Etching of AlN”. Applied Physics Letters 67 (8) (1995), pp. 1119–1121. doi: 10.1063/1.114980.

  • [98] D. A. Stocker, E. F. Schubert, and J. M. Redwing. “Crystallographic Wet Chemical Etching of GaN”. Applied Physics Letters 73 (18) (1998), pp. 2654–2656. doi: 10.1063/1.122543.

  • [99] M. Gosálvez, P. Pal, and K Sato. “Reconstructing the 3D Etch Rate Distribution of Silicon in Anisotropic Etchants Using Data From Vicinal {1 0 0}, {1 1 0} and {1 1 1} Surfaces”. Journal of Micromechanics and Microengineering 21 (10) (2011), p. 105018. doi: 10.1088/0960-1317/21/10/105018.

  • [100] M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa. “Differences in Anisotropic Etching Properties of KOH and TMAH Solutions”. Sensors and Actuators A: Physical 80 (2) (2000), pp. 179–188. doi: 10.1016/S0924-4247(99)00264-2.

  • [101] K. Biswas and S. Kal. “Etch Characteristics of KOH, TMAH and Dual Doped TMAH for Bulk Micromachining of Silicon”. Microelectronics Journal 37 (6) (2006), pp. 519–525. doi: 10.1016/j.mejo.2005.07.012.

  • [102] P. Pal, V. Swarnalatha, A. V. N. Rao, A. K. Pandey, H. Tanaka, and K. Sato. “High Speed Silicon Wet Anisotropic Etching for Applications in Bulk Micromachining: A Review”. Micro and Nano Systems Letters 9 (1) (2021), pp. 1–59. doi: 10.1186/s40486-021-00129-0.

  • [103] S. Wilson, R. Armstrong, M Dagenais, W. Beard, and C. C. Wood. “{7 6 6} Oriented V-Groove Surfaces on Br2 -CH3 OH Etched (1 0 0) GaAs Wafers”. Journal of Materials Science: Materials in Electronics 8 (2) (1997), pp. 109–113. doi: 10.1023/A:1018525625590.

  • [104] A Ababneh, H Kreher, and U Schmid. “Etching Behaviour of Sputter-Deposited Aluminium Nitride Thin Films in H3 PO4 and KOH Solutions”. Microsystem Technologies 14 (4) (2008), pp. 567–573. doi: 10.1007/s00542-007-0450-x.

  • [105] N. Aota, H. Aida, Y. Kimura, Y. Kawamata, and M. Uneda. “Fabrication Mechanism for Patterned Sapphire Substrates by Wet Etching”. ECS Journal of Solid State Science and Technology 3 (5) (2014), N69–N74. doi: 10.1149/2.005405jss.

  • [106] Y. Xing, Z. Guo, M. A. Gosálvez, G. Wu, and X. Qiu. “Characterization of Anisotropic Wet Etching of Single-Crystal Sapphire”. Sensors and Actuators A: Physical 303 (2020), p. 111667. doi: 10.1016/j.sna.2019.111667.

  • [107] H. Camon and Z. Moktadir. “Simulation of Silicon Etching with KOH”. Microelectronics Journal 28 (4) (1997), pp. 509–517. doi: 10.1016/S0026-2692(96)00067-5.

  • [108] H. Zhou, J. Fu, and R. M. Silver. “Time-Resolved Kinetic Monte-Carlo Simulation Study on Si (111) Etching”. The Journal of Physical Chemistry C 111 (9) (2007), pp. 3566–3574. doi: 10.1021/jp060941j.

  • [109] Zhenjun Zhu and Chang Liu. “Micromachining Process Simulation Using a Continuous Cellular Automata Method”. Journal of Microelectromechanical Systems 9 (2) (2000), pp. 252–261. doi: 10.1109/84.846706.

  • [110] M. A. Gosálvez, Y. Xing, K. Sato, and R. M. Nieminen. “Discrete and Continuous Cellular Automata for the Simulation of Propagating Surfaces”. Sensors and Actuators A: Physical 155 (1) (2009), pp. 98–112. doi: 10.1016/j.sna.2009.08.012.

  • [111] S. Wolfram. “Cellular Automata as Models of Complexity”. Nature 311 (5985) (1984), pp. 419–424. doi: 10.1038/311419a0.

  • [112] H. Zhang, Y. Xing, Y. Li, M. A. Gosálvez, and X. Qiu. “Kinetic Monte Carlo Method for the Simulation of Anisotropic Wet Etching of Quartz”. Sensors and Actuators A: Physical 256 (2017), pp. 24–34. doi: 10.1016/j.sna.2017.01.008.

  • [113] P. Pal and K. Sato. “A Comprehensive Review on Convex and Concave Corners in Silicon Bulk Micromachining based on Anisotropic Wet Chemical Etching”. Micro and Nano Systems Letters 3 (1) (2015), p. 6. doi: 10.1186/s40486-015-0012-4.

  • [114] N. Wilke, A. Mulcahy, S.-R. Ye, and A. Morrissey. “Process Optimization and Characterization of Silicon Microneedles Fabricated by Wet Etch Technology”. Microelectronics Journal 36 (7) (2005), pp. 650 –656. doi: 10.1016/j.mejo.2005.04.044.

  • [115] K.-D. Li and J.-R. Miao. “Modeling the Characteristic Etch Morphologies Along Specific Crystallographic Orientations by Anisotropic Chemical Etching”. AIP Advances 8 (2) (2018), p. 025214. doi: 10.1063/1.5021721.

  • [116] A. Koide, K. Sato, and S. Tanaka. “Simulation of Two-Dimensional Etch Profile of Silicon During Orientation-Dependent Anisotropic Etching”. Proceedings of IEEE Micro Electro Mechanical Systems. 1991, pp. 216–220. doi: 10.1109/MEMSYS.1991.114799.

  • [117] J. Frühauf, K. Trautmann, J. Wittig, and D. Zielke. “A Simulation Tool for Orientation Dependent Etching”. Journal of Micromechanics and Microengineering 3 (3) (1993), pp. 113–115. doi: 10.1088/0960-1317/3/3/004.

  • [118] O. Ertl. “Numerical Methods for Topography Simulation”. Doctoral Dissertation. TU Wien, Institute for Microelectronics, 2010. url: https://www.iue.tuwien.ac.at/phd/ertl/.

  • [119] C. Montoliu, N. Ferrando, M. A. Gosálvez, J. Cerdá and R. J. Colom. “Level Set Implementation for the Simulation of Anisotropic Etching: Application to Complex MEMS Micromachining”. Journal of Micromechanics and Microengineering 23 (7) (2013), pp. 1–17. doi: 10.1088/0960-1317/23/7/075017.

  • [120] J. Zhang, Y. Xing, M. A. Gosálvez, X. Qiu, X. Lin, and C. Zhang. “Level Set Simulation of Surface Evolution in Anisotropic Wet Etching of Patterned Sapphire Substrate”. Proceedings of the International Conference on Micro Electro Mechanical Systems (MEMS). 2019, pp. 361–364. doi: 10.1109/MEMSYS.2019.8870817.

  • [121] Y. Xing, J. Qian, M. A. Gosálvez, J. Zhang, and Y. Zhang. “Simulation-Based Optimization of Out-Of-Plane, Variable-Height, Convoluted Quartz Micro Needle Arrays via Single-Step Anisotropic Wet Etching”. Microelectronic Engineering 231 (2020), p. 111375. doi: 10.1016/j.mee.2020.111375.

  • [122] A. Toifl, F. Rodrigues, L. F. Aguinsky, A. Hössinger, and J. Weinbub. “Continuum Level-Set Model for Anisotropic Wet Etching of Patterned Sapphire Substrates”. Semiconductor Science and Technology 36 (4) (2021), p. 045016. doi: 10.1088/1361-6641/abe49b.

  • [123] T. Thurgate. “Segment-Based Etch Algorithm and Modeling”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10 (9) (1991), pp. 1101–1109. doi: 10.1109/43.85756.

  • [124] M. E. Law and S. M. Cea. “Continuum Based Modeling of Silicon Integrated Circuit Processing: An Object Oriented Approach”. Computational Materials Science 12 (4) (1998), pp. 289–308. doi: 10.1016/S0927-0256(98)00020-2.

  • [125] Z.-F. Zhou, Q.-A. Huang, W.-H. Li, and W. Lu. “A Novel 3-D Dynamic Cellular Automata Model for Photoresist-Etching Process Simulation”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26 (1) (2007), pp. 100–114. doi: 10.1109/TCAD.2006.882510.

  • [126] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”. 21 (4) (1987), 163–169. doi: 10.1145/37402.37422.

  • [127] Z. Wang, J. Che, L.-T. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. “Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation”. Journal of Chemical Theory and Computation 8 (2) (2012), pp. 386–397. doi: 10.1021/ct200647j.

  • [128] D. Adalsteinsson and J. Sethian. “The Fast Construction of Extension Velocities in Level Set Methods”. Journal of Computational Physics 148 (1) (1999), pp. 2–22. doi: 10.1006/jcph.1998.6090.

  • [129] M. Quell, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Level-Set Velocity Extension Algorithm for Nanopatterning Applications”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2019, pp. 335–338. doi: 10.1109/SISPAD.2019.8870482.

  • [130] S. Hysing. “Mixed Element FEM Level Set Method for Numerical Simulation of Immiscible Fluids”. Journal of Computational Physics 231 (6) (2012), pp. 2449–2465. doi: 10.1016/j.jcp.2011.11.035.

  • [131] C. Lehrenfeld. “High Order Unfitted Finite Element Methods on Level Set Domains Using Isoparametric Mappings”. Computer Methods in Applied Mechanics and Engineering 300 (2016), pp. 716–733. doi: 10.1016/j.cma.2015.12.005.

  • [132] C. Min and F. Gibou. “A Second Order Accurate Level Set Method on Non-Graded Adaptive Cartesian Grids”. Journal of Computational Physics 225 (1) (2007), pp. 300 –321. doi: 10.1016/j.jcp.2006.11.034.

  • [133] M. J. Berger and J. Oliger. “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations”. Journal of Computational Physics 53 (3) (1984), pp. 484 –512. doi: 10.1016/0021-9991(84)90073-1.

  • [134] M. Quell, G. Diamantopoulos, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallel Correction for Hierarchical Re-Distancing Using the Fast Marching Method”. Advances in High Performance Computing, Studies in Computational Intelligence. Vol. 902. 2020, pp. 438–451. doi: 10.1007/978-3-030-55347-0_37.

  • [135] B. Engquist and S. Osher. “Stable and Entropy Satisfying Approximations for Transonic Flow Calculations”. Mathematics of Computation 34 (149) (1980), pp. 45–75. doi: 10.1090/S0025-5718-1980-0551290-1.

  • [136] J. A. Sethian. Level Set Methods and Fast Marching Methods. Vol. 3. Cambridge University Press, 1999. isbn: 9780521645577.

  • [137] B. M. G. Crandall and P. L. Lions. “Two Approximations of Solutions of Hamilton-Jacobi Equations”. Mathematics of Computation 43 (167) (1984), pp. 1–19. doi: 10.1090/S0025-5718-1984-0744921-8.

  • [138] S. Osher and C.-W. Shu. “High-Order Essentially Nonoscillatory Schemes for Hamilton–Jacobi Equations”. SIAM Journal on Numerical Analysis 28 (4) (1991), pp. 907–922. doi: 10.1137/0728049.

  • [139] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differenzengleichungen der mathematischen Physik”. Mathematische Annalen 100 (1) (1928), pp. 32–74. doi: 10.1007/BF01448839.

  • [140] Silvaco Victory Process. https://silvaco.com/tcad/. (accessed July 2, 2021).

  • [141] Synopsys - Sentaurus Topography. https://www.synopsys.com/silicon/tcad/process-simulation/sentaurus-topography.html. (accessed July 2, 2021).

  • [142] ViennaTS. https://www.iue.tuwien.ac.at/software/viennats/. (accessed July 2, 2021).

  • [143] M. G. Crandall and P.-L. Lions. “Viscosity Solutions of Hamilton-Jacobi Equations”. Transactions of the American Mathematical Society 277 (1) (1983), pp. 1–42. doi: 10.1090/S0002-9947-1983-0690039-8.

  • [144] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. Cambridge University Press, 1989. isbn: 0521880688.

  • [145] T. J. Hubbard. “MEMS Design: The Geometry of Silicon Micromachining”. Doctoral Dissertation. California Institute of Technology, 1994. url: https://thesis.library.caltech.edu/3565/1/Hubbard_tj_1994.pdf.

  • [146] Z. Li, R. Li, Y. Jiang, Y. Zhang, Y. Cao, and X. Wang. “Performance Improvement by Blanket Boron Implant in the Sigma-Shaped Trench Before the Embedded SiGe Source/Drain Formation for 28-nm PMOSFET”. IEEE Electron Device Letters 41 (6) (2020), pp. 796–799. doi: 10.1109/LED.2020.2985740.

  • [147] C. Qin, H. Yin, G. Wang, P. Hong, X. Ma, H. Cui, Y. Lu, L. Meng, H. Yin, H. Zhong, J. Yan, H. Zhu, Q. Xu, J. Li, C. Zhao, and H. H. Radamson. “Study of Sigma-Shaped Source/Drain Recesses for Embedded-SiGe pMOSFETs”. Microelectronic Engineering 181 (2017), pp. 22–28. doi: 10.1016/j.mee.2017.07.001.

  • [148] H Lo, J Peng, E Reis, B Zhu, W Ma, S. Y. Mun, S Shintri, E. M. Bazizi, C Gaire, Y Qi, J Chen, S. N. Ting, O Hu, and S Samavedam. “A Novel Approach to Control Source/Drain Cavity Profile for Device Performance Improvement”. IEEE Transactions on Electron Devices 65 (9) (2018), pp. 3640–3645. doi: 10.1109/TED.2018.2856770.

  • [149] A. Toifl, M. Quell, A. Hössinger, A. Babayan, S. Selberherr, and J. Weinbub. “Novel Numerical Dissipation Scheme for Level-Set Based Anisotropic Etching Simulations”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2019, pp. 327–330. doi: 10.1109/SISPAD.2019.8870443.

  • [150] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld. “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors”. Journal of Applied Physics 97 (1) (2005), p. 011101. doi: 10.1063/1.1819976.

  • [151] J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld. “Defect Reduction of Selective Ge Epitaxy in Trenches on Si(001) Substrates Using Aspect Ratio Trapping”. Applied Physics Letters 90 (5) (2007), p. 052113. doi: 10.1063/1.2435603.

  • [152] F. Iacopi, G. Walker, L. Wang, L. Malesys, S. Ma, B. V. Cunning, and A. Iacopi. “Orientation-Dependent Stress Relaxation in Hetero-Epitaxial 3C-SiC Films”. Applied Physics Letters 102 (1) (2013), p. 011908. doi: 10.1063/1.4774087.

  • [153] M. Albani, A. Marzegalli, R. Bergamaschini, M. Mauceri, D. Crippa, F. La Via, H. von Känel, and L. Miglio. “Solving the Critical Thermal Bowing in 3C-SiC/Si(111) by a Tilting Si Pillar Architecture”. Journal of Applied Physics 123 (18) (2018), p. 185703. doi: 10.1063/1.5019325.

  • [154] T. Kreiliger, M. Mauceri, M. Puglisi, F. Mancarella, F. La Via, D. Crippa, W. Kaplan, A. Schöner, A. Marzegalli, L. Miglio, and H. von Känel. “3C-SiC Epitaxy on Deeply Patterned Si(111) Substrates”. Silicon Carbide and Related Materials 2015. Vol. 858. Materials Science Forum. 2016, pp. 151–154. doi: 10.4028/www.scientific.net/MSF.858.151.

  • [155] Basic Parameters of Silicon Carbide, Ioffe Institute. http://www.ioffe.ru/SVA/NSM/Semicond/SiC/basic.html. (accessed July 2, 2021).

  • [156] M. De Graef and M. E. McHenry. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry. Cambridge University Press, 2012. isbn: 9781139051637. doi: 10.1017/CBO9781139051637.

  • [157] P. Alfeld, M. Neamtu, and L. L. Schumaker. “Bernstein-Bézier Polynomials on Spheres and Sphere-Like Surfaces”. Computer Aided Geometric Design 13 (4) (1996), pp. 333–349. doi: 10.1016/0167-8396(95)00030-5.

  • [158] P. Manstetten. “Efficient Flux Calculations for Topography Simulation”. Doctoral Dissertation. TU Wien, Institute for Microelectronics, 2018. url: https://www.iue.tuwien.ac.at/phd/manstetten/.

  • [159] I. Akasaki and H. Amano. “Breakthroughs in Improving Crystal Quality of GaN and Invention of the p–n Junction Blue-Light-Emitting Diode”. Japanese Journal of Applied Physics 45 (12) (2006), pp. 9001–9010. doi: 10.1143/jjap.45.9001.

  • [160] K. Tadatomo. “Epitaxial Growth of GaN on Patterned Sapphire Substrates”. III-Nitride Based Light Emitting Diodes and Applications. Springer, 2017, pp. 69–92. doi: 10.1007/978-981-10-3755-9_4.

  • [161] T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg. “Silicon-On-Sapphire Integrated Waveguides for the Mid-Infrared”. Optics Express 18 (12) (2010), pp. 12127–12135. doi: 10.1364/OE.18.012127.

  • [162] N. Singh, A. Casas-Bedoya, D. D. Hudson, A. Read, E. Mägi, and B. J. Eggleton. “Mid-IR Absorption Sensing of Heavy Water Using a Silicon-On-Sapphire Waveguide”. Optics Letters 41 (24) (2016), pp. 5776–5779. doi: 10.1364/OL.41.005776.

  • [163] C. L. Keraly, L Kuritzky, M Cochet, and C. Weisbuch. “Ray Tracing for Light Extraction Efficiency (LEE) Modeling in Nitride LEDs”. III-Nitride Based Light Emitting Diodes and Applications. Springer, 2017, pp. 301–340. doi: 10.1007/978-981-10-3755-9_11.

  • [164] J. Lee, D. Lee, B. Oh, and J. Lee. “Comparison of InGaN-Based LEDs Grown on Conventional Sapphire and Cone-Shape-Patterned Sapphire Substrate”. IEEE Transactions on Electron Devices 57 (1) (2010), pp. 157–163. doi: 10.1109/TED.2009.2034495.

  • [165] F. Brunner, F. Edokam, U. Zeimer, W. John, D. Prasai, O. Krüger, and M. Weyers. “Semi-Polar-GaN Templates Grown on 100 mm Trench-Patterned r-Plane Sapphire”. Physica Status Solidi (B) 252 (5) (2015), pp. 1189–1194. doi: 10.1002/pssb.201552054.

  • [166] J.-H. Lee, J.-T. Oh, J.-S. Park, J.-W. Kim, Y.-C. Kim, J.-W. Lee, and H.-K. Cho. “Improvement of Luminous Intensity of InGaN Light Emitting Diodes Grown on Hemispherical Patterned Sapphire”. Physica Status Solidi (C) 3 (6) (2006), pp. 2169–2173. doi: 10.1002/pssc.200565308.

  • [167] X.-F. Li, S.-W. Huang, H.-Y. Lin, C.-Y. Lu, S.-F. Yang, C.-C. Sun, and C.-Y. Liu. “Fabrication of Patterned Sapphire Substrate and Effect of Light Emission Pattern on Package Efficiency”. Optical Material Express 5 (8) (2015), pp. 1784–1791. doi: 10.1364/OME.5.001784.

  • [168] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang. “Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates”. IEEE Photonics Technology Letters 18 (10) (2006), pp. 1152–1154. doi: 10.1109/LPT.2006.874737.

  • [169] D. Yang, H. Liang, Y. Qiu, R. Shen, Y. Liu, X. Xia, S. Song, K. Zhang, Z. Yu, Y. Zhang, and G. Du. “Evolution of the Crystallographic Planes of Cone-Shaped Patterned Sapphire Substrate Treated by Wet Etching”. Applied Surface Science 295 (2014), pp. 26 –30. doi: 10.1016/j.apsusc.2013.12.154.

  • [170] J. Shen, D. Zhang, F.-H. Zhang, and Y. Gan. “AFM Characterization of Patterned Sapphire Substrate with Dense Cone Arrays: Image Artifacts and Tip-Cone Convolution Effect”. Applied Surface Science 433 (2018), pp. 358 –366. doi: 10.1016/j.apsusc.2017.10.077.

  • [171] C. Sun, Y. hui Zhang, Y. xin Zheng, C. shuang Chu, K. kai Tian, C. Fan, Z. hui Zhang, and W. Bi. “The Morphology Evolution of Selective Area Wet Etched Commercial Patterned Sapphire Substrates”. Journal of Micromechanics and Microengineering 29 (3) (2019), p. 035012. doi: 10.1088/1361-6439/aafd9f.

  • [172] L. Zhang, Z. Yuan, S. Jiang, H. Shen, F. Cao, Z. Ning, Y. Huang, D. Xing, H. Zuo, J. Han, and J. Sun. “Cavity Etching Evolution on the A-Plane of Sapphire Crystal in Molten KOH Etchant”. Journal of Crystal Growth 552 (2020), p. 125926. doi: 10.1016/j.jcrysgro.2020.125926.

  • [173] Y.-C. Chen, B.-W. Lin, W.-C. Hsu, and Y. S. Wu. “Morphologies and Plane Indices of Pyramid Patterns on Wet-Etched Patterned Sapphire Substrate”. Materials Letters 118 (2014), pp. 72 –75. doi: 10.1016/j.matlet.2013.12.035.

  • [174] J. Shen, D. Zhang, Y. Wang, and Y. Gan. “AFM and SEM Study on Crystallographic and Topographical Evolution of Wet-Etched Patterned Sapphire Substrates (PSS): Part I. Cone-Shaped PSS Etched in Sulfuric Acid and Phosphoric Acid Mixture (3:1) at 230◦ C”. ECS Journal of Solid State Science and Technology 6 (1) (2016), R24–R34. doi: 10.1149/2.0221701jss.

  • [175] J. Shen, D. Zhang, Y. Wang, and Y. Gan. “AFM and SEM Study on Crystallographic and Topographical Evolutions of Wet-Etched Patterned Sapphire Substrate (PSS): Part II. Cone-Shaped PSS Etched in H2 SO4 and H3 PO4 Mixture with Varying Volume Ratio at 230◦ C”. ECS Journal of Solid State Science and Technology 6 (9) (2017), R122–R130. doi: 10.1149/2.0091709jss.

  • [176] J. Shen, D. Zhang, Y. Wang, and Y. Gan. “AFM and SEM Study on Crystallographic and Topographical Evolutions of Wet-Etched Patterned Sapphire Substrate (PSS): Part III. Cone-Shaped PSS Etched in H2 SO4 and H3 PO4 Mixture at Various Temperatures”. ECS Journal of Solid State Science and Technology 6 (12) (2017), R163–R169. doi: 10.1149/2.0171712jss.

  • [177] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik. Properties of Sapphire. Springer, 2009, pp. 55–176. isbn: 9780387856940. doi: 10.1007/978-0-387-85695-7_2.

  • [178] Properties of Sapphire. http://www.mt-berlin.com/frames_cryst/descriptions/sapphire.htm. (accessed July 2, 2021).

  • [179] E. J. Siem and W. C. Carter. “Orientation-Dependent Surface Tension Functions for Surface Energy Minimizing Calculations”. Journal of Materials Science 40 (12) (2005), pp. 3107–3113. doi: 10.1007/s10853-005-2671-7.

  • [180] M. Salvalaglio, R. Backofen, R. Bergamaschini, F. Montalenti, and A. Voigt. “Faceting of Equilibrium and Metastable Nanostructures: A Phase-Field Model of Surface Diffusion Tackling Realistic Shapes”. Crystal Growth & Design 15 (6) (2015), pp. 2787–2794. doi: 10.1021/acs.cgd.5b00165.

  • [181] A. Toifl, V. Šimonka, A. Hössinger, S. Selberherr, T. Grasser, and J. Weinbub. “Simulation of the Effects of Postimplantation Annealing on Silicon Carbide DMOSFET Characteristics”. IEEE Transactions on Electron Devices 66 (7) (2019), pp. 3060–3065. doi: 10.1109/TED.2019.2916929.

  • [182] A. Toifl, V. Šimonka, A. Hössinger, S. Selberherr, and J. Weinbub. “Steady-State Empirical Model for Electrical Activation of Silicon-Implanted Gallium Nitride”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2018, pp. 336–339. doi: 10.1109/SISPAD.2018.8551728.

  • [183] A. Saha and J. A. Cooper. “A 1-kV 4H-SiC Power DMOSFET Optimized for Low On-Resistance”. IEEE Transactions on Electron Devices 54 (10) (2007), pp. 2786–2791. doi: 10.1109/TED.2007.904577.

  • [184] V. Šimonka, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. “Transient Model for Electrical Activation of Aluminium and Phosphorus-Implanted Silicon Carbide”. Journal of Applied Physics 123 (23) (2018), p. 235701. doi: 10.1063/1.5031185.

  • [185] M. Lades. “Modeling and Simulation of Wide Bandgap Semiconductor Devices: 4H/6H-SiC”. Doctoral Dissertation. TU München, 2000. url: https://mediatum.ub.tum.de/doc/601498/601498.pdf.

  • [186] V. Uhnevionak, A. Burenkov, C. Strenger, G. Ortiz, E. Bedel-Pereira, V. Mortet, F. Cristiano, A. J. Bauer, and P. Pichler. “Comprehensive Study of the Electron Scattering Mechanisms in 4H-SiC MOSFETs”. IEEE Transactions on Electron Devices 62 (8) (2015), pp. 2562–2570. doi: 10.1109/TED.2015.2447216.

  • [187] Y. Varshni. “Temperature Dependence of the Energy Gap in Semiconductors”. Physica 34 (1) (1967), pp. 149–154. doi: 10.1016/0031-8914(67)90062-6.

  • [188] R. P. Devaty and W. J. Choyke. “Optical Characterization of Silicon Carbide Polytypes”. Physica Status Solidi (A) 162 (1) (1997), pp. 5–38. doi: 10.1002/1521-396X(199707)162:1<5::AID-PSSA5>3.0.CO;2-J.

  • [189] W. Shockley and W. T. Read. “Statistics of the Recombinations of Holes and Electrons”. Physical Review 87 (5 1952), pp. 835–842. doi: 10.1103/PhysRev.87.835.

  • [190] N. Ramungul, V. Khemka, T. P. Chow, M. Ghezzo, and J. W. Kretchmer. “Carrier Lifetime Extraction from a 6H-SiC High Voltage p-i-n Rectifier Reverse Recovery Waveform”. Silicon Carbide, III-Nitrides and Related Materials. Vol. 264. Materials Science Forum. Dec. 1997, pp. 1065–1068. doi: 10.4028/www.scientific.net/MSF.264-268.1065.

  • [191] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer, 1984. doi: 10.1007/978-3-7091-8752-4.

  • [192] T. Ayalew. “SiC Semiconductor Devices Technology, Modeling and Simulation”. Doctoral Dissertation. TU Wien, Institute for Microelectronics, 2004. url: https://www.iue.tuwien.ac.at/phd/ayalew.

  • [193] T. Aichinger, G. Rescher, and G. Pobegen. “Threshold Voltage Peculiarities and Bias Temperature Instabilities of SiC MOSFETs”. Microelectronics Reliability 80 (2018), pp. 68–78. doi: 10.1016/j.microrel.2017.11.020.

  • [194] B. E. Saleh and M. C. Teich. Fundamentals of Photonics. John Wiley & Sons, 2019. isbn: 9780471839651. doi: 10.1002/0471213748.

  • [195] G. A. Reider. Photonics. Springer, 2016. isbn: 9783319260747. doi: 10.1007/978-3-319-26076-1.

  • [196] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura. “Prospects for LED Lighting”. Nature Photonics 3 (4) (2009), pp. 180–182. doi: 10.1038/nphoton.2009.32.

  • [197] A. David. “Surface-Roughened Light-Emitting Diodes: An Accurate Model”. Journal of Display Technology 9 (5) (2013), pp. 301–316. doi: 10.1109/JDT.2013.2240373.

  • [198] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins. “High-Power Truncated-Inverted-Pyramid (Alx Ga1−x )0.5 In0.5 P/GaP Light-Emitting Diodes Exhibiting > 50% External Quantum Efficiency”. Applied Physics Letters 75 (16) (1999), pp. 2365–2367. doi: 10.1063/1.125016.

  • [199] Jae-Soong Lee, Joonhee Lee, Sunghwan Kim, and Heonsu Jeon. “GaN-Based Light-Emitting Diode Structure with Monolithically Integrated Sidewall Deflectors for Enhanced Surface Emission”. IEEE Photonics Technology Letters 18 (15) (2006), pp. 1588–1590. doi: 10.1109/LPT.2006.879559.

  • [200] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas. “InGaN/GaN Quantum-Well Heterostructure Light-Emitting Diodes Employing Photonic Crystal Structures”. Applied Physics Letters 84 (19) (2004), pp. 3885–3887. doi: 10.1063/1.1738934.

  • [201] A. Borbely and S. G. Johnson. “Prediction of Light Extraction Efficiency of LEDs by Ray Trace Simulation”. Proceedings of the International Conference on Solid State Lighting. Vol. 5187. International Society for Optics and Photonics. 2004, pp. 301 –308. doi: 10.1117/12.504935.

  • [202] L Pajewski, H Stawska, and E Beres-Pawlik. “Ray Tracing Methods in Numerical Analysis of Double-Clad Microstructured Optical Fibre Coupler”. Optical and Quantum Electronics 49 (3) (2017), p. 99. doi: 10.1007/s11082-017-0938-2.

  • [203] Silvaco Victory Device. https://silvaco.com/tcad/. (accessed July 2, 2021).

  • [204] Q. Du and D. Wang. “Recent Progress in Robust and Quality Delaunay Mesh Generation”. Journal of Computational and Applied Mathematics 195 (1) (2006), pp. 8–23. doi: 10.1016/j.cam.2005.07.014.

Own Publications

Journal Articles

\( [1] \)

A. Toifl, F. Rodrigues, L. F. Aguinsky, A. Hössinger, and J. Weinbub. “Continuum Level-Set Model for Anisotropic Wet Etching of Patterned Sapphire Substrates”. Semiconductor Science and Technology 36 (4) (2021), p. 045016. doi: 10.1088/1361-6641/abe49b

\( [2] \)

A. Toifl, M. Quell, X. Klemenschits, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “The Level-Set Method for Multi-Material Wet Etching and Non-Planar Selective Epitaxy”. IEEE Access 8 (2020), pp. 115406–115422. doi: 10.1109/ACCESS.2020.3004136

\( [3] \)

A. Toifl, V. Šimonka, A. Hössinger, S. Selberherr, T. Grasser, and J. Weinbub. “Simulation of the Effects of Postimplantation Annealing on Silicon Carbide DMOSFET Characteristics”. IEEE Transactions on Electron Devices 66 (7) (2019), pp. 3060–3065. doi: 10.1109/TED.2019.2916929

\( [4] \)

V. Šimonka, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. “Transient Model for Electrical Activation of Aluminium and Phosphorus-Implanted Silicon Carbide”. Journal of Applied Physics 123 (23) (2018), p. 235701. doi: 10.1063/1.5031185

Conference Contributions

\( [5] \)

F. Rodrigues, L. F. Aguinsky, A. Toifl, A. Hössinger, and J. Weinbub. “Feature Scale Modeling of Fluorocarbon Plasma Etching for Via Structures Including Faceting Phenomena”. Book of Abstracts of the International Workshop on Computational Nanotechnology (IWCN). 2021, pp. 101–102

\( [6] \)

M. Quell, A. Toifl, A. Hössinger, S. Selberherr, and J. Weinbub. “Parallelized Level-Set Velocity Extension Algorithm for Nanopatterning Applications”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2019, pp. 335–338. doi: 10.1109/SISPAD.2019.8870482

\( [7] \)

A. Toifl, M. Quell, A. Hössinger, A. Babayan, S. Selberherr, and J. Weinbub. “Novel Numerical Dissipation Scheme for Level-Set Based Anisotropic Etching Simulations”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2019, pp. 327–330. doi: 10.1109/SISPAD.2019.8870443

\( [8] \)

P. Manstetten, G. Diamantopoulos, L. Gnam, L. F. Aguinsky, M. Quell, A. Toifl, A. Scharinger, A. Hössinger, M. Ballicchia, M. Nedjalkov, and J. Weinbub. “High Performance TCAD: From Simulating Fabrication Processes to Wigner Quantum Transport”. Book of Abstracts of the Workshop on High Performance TCAD (WHPTCAD). 2019, p. 13

\( [9] \)

G. Diamantopoulos, P. Manstetten, L. Gnam, V. Šimonka, L. F. Aguinsky, M. Quell, A. Toifl, A. Hössinger, and J. Weinbub. “Recent Advances in High Performance Process TCAD”. Book of Abstracts of the SIAM Conference on Computational Science and Engineering (CSE). 2019, p. 335

\( [10] \)

A. Toifl, V. Šimonka, A. Hössinger, S. Selberherr, and J. Weinbub. “Steady-State Empirical Model for Electrical Activation of Silicon-Implanted Gallium Nitride”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2018, pp. 336–339. doi: 10.1109/SISPAD.2018.8551728

Invited Talks

\( [11] \)

A. Toifl. “Physical Process TCAD: Victory Process’ Crystal Anisotropy Engine”. Proceedings of the Silvaco Users Global Event (SURGE). 2020

Curriculum Vitae

Personal Information

Name

Alexander Toifl

Nationality

Austrian

Place of Birth

St. Pölten, Austria

Education

since 08/2018

Doctoral Student

Institute for Microelectronics, TU Wien, Austria

Primary Supervisor: Assistant Prof. Privatdoz. Dipl.-Ing.

Josef Weinbub, BSc

Secondary Supervisor: O.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Siegfried Selberherr

09/2016 - 06/2018

Master’s Degree in Microelectronics and Photonics

(With Distinction)

Faculty of Electrical Engineering and Information Technology,

TU Wien, Austria

Thesis: Modeling and Simulation of Thermal Annealing of Implanted GaN and SiC

03/2013 - 06/2016

Bachelor’s Degree in Electrical Engineering and

Information Technology (With Distinction)

Faculty of Electrical Engineering and Information Technology,

TU Wien, Austria

Thesis: Interaction of Random Discrete Dopants with Oxide Traps

Employment

since 08/2018

Research Assistant

Christian Doppler Laboratory for HPTCAD

Institute for Microelectronics, TU Wien, Austria

07/2016 - 09/2016

Freelance Software Engineer (ViennaMesh, Mesh Coarsening)

Institute for Microelectronics, TU Wien, Austria

2015-2016

Tutor (Lecture Signals and Systems 2)

Institute of Telecommunications, TU Wien, Austria

08/2011

Internship

Institute of IT Security Research, FH St. Pölten, Austria

Awards

09/2018

Faculty’s Award for the Presentation of the Master’s Thesis

(Preis der Fakultät für Elektrotechnik und Informationstechnik)

2014-2017

Four Annual Merit Scholarships (Leistungsstipendien)

Faculty of Electrical Engineering and Information Technology,

TU Wien, Austria