next up previous contents
Next: Bibliography Up: Dissertation Oliver Triebl Previous: 8. Conclusions and Outlook


A. Derivation of the Impact-Ionization Integral

In the following the derivation of the impact-ionization integral from Section 5.1.2 will be given. First, the differntial equation

$\displaystyle \ensuremath{\frac{\ensuremath{ \mathrm{d}}I_p}{\ensuremath{ \ma...
...uremath{\alpha _p}- \ensuremath{\alpha _n}\right) I_p = \ensuremath{\alpha _n}I$ (A.1)

has to be solved. Using the simplified notation

$\displaystyle y' + P y = Q,$ (A.2)

with $ P(x)=-(\ensuremath{\alpha _p}- \ensuremath{\alpha _n})$ and $ Q(x)=\ensuremath{\alpha _n}I,$ one can derive the homogenous solution

$\displaystyle y_h = C \exp \left( - \int_0^x P \ensuremath{ \mathrm{d}}x \right) ,$ (A.3)

where C is the constant of integration. Applying the method of variation of constants, the ansatz of the particular solution $ y_p$ is derived from the homogenous solution, using $ C \rightarrow C(x).$ This ansatz function $ y_p$ can be differentiated to

$\displaystyle y_p' = C' \exp \left( - \int_0^x P \ensuremath{ \mathrm{d}}x \right) - P y_p .$ (A.4)

Comparison of the coefficients between equations (A.2) and (A.4) gives

$\displaystyle Q = C' \exp \left( - \int_0^x P \ensuremath{ \mathrm{d}}x \right)$ (A.5)

and $ C(x)$ evaluates to

$\displaystyle C = \int_0^x Q \exp \left( \int_0^x P \ensuremath{ \mathrm{d}}x' \right) \ensuremath{ \mathrm{d}}x.$ (A.6)

This leads to the particular solution

$\displaystyle y_p = \exp \left( - \int_0^x P \ensuremath{ \mathrm{d}}x \right)...
...t_0^x P \ensuremath{ \mathrm{d}}x' \right) \ensuremath{ \mathrm{d}}x \right ]$ (A.7)

and together with the homogenous solution $ y_h$ to the solution of (A.2)

$\displaystyle y = \exp \left( - \int_0^x P \ensuremath{ \mathrm{d}}x \right) \...
...P \ensuremath{ \mathrm{d}}x' \right) \ensuremath{ \mathrm{d}}x + C \right ] .$ (A.8)

Using (A.8) our initial problem (A.1) solves together with the boundary conditions $ I_p(0) =
I_{p0}$ and $ I_p(W) = I = M_p I_{p0}$ to

$\displaystyle I_p = I \exp \left( \int_0^x \left( \ensuremath{\alpha _p}- \ensu...
...h{ \mathrm{d}}x' \right) \ensuremath{ \mathrm{d}}x + \frac{1}{M_p} \right ] .$ (A.9)

To simplify the solution (A.9) the following relationship can be used. Considering

$\displaystyle U = \int_0^x y \ensuremath{ \mathrm{d}}x , \qquad \ensuremath{\f...
...}}}{\ensuremath{ \mathrm{d}}U}} \exp \left( U \right) = \exp \left( U \right),$ (A.10)

the following simplification can be performed:

$\displaystyle \int y \exp \left( \int_0^x y \ensuremath{ \mathrm{d}}x' \right)...
...left( U \right) = \exp \left ( \int_0^x y \ensuremath{ \mathrm{d}}x' \right) .$ (A.11)

Making the relation (A.11) applicable, (A.9) can be rewritten at the position $ x=W$ as

$\displaystyle 1 = \exp \left( \int_0^W \left( \ensuremath{\alpha _p}- \ensurema...
...,\mathrm{d}}x' \right) + 1} + \frac{1}{M_p} \left. \vphantom{\int_0^W} \right ]$ (A.12)

and simplified to

$\displaystyle 1 - \frac{1}{M_p} = \int_0^W \ensuremath{\alpha _p}\exp \left( - ...
...pha _n}\right) \ensuremath{ \mathrm{d}}x' \right) \ensuremath{ \mathrm{d}}x .$ (A.13)


next up previous contents
Next: Bibliography Up: Dissertation Oliver Triebl Previous: 8. Conclusions and Outlook

O. Triebl: Reliability Issues in High-Voltage Semiconductor Devices