Next: Bibliography
Up: Dissertation Oliver Triebl
Previous: A. Derivation of the
-
- 1
-
A. Allan, D. Edenfeld, W. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian,
``2001 technology roadmap for semiconductors,'' IEEE Computer,
vol. 35, no. 1, pp. 42-53, 2002.
- 2
-
C. A. Mack, ``Fifty years of Moore's law,'' IEEE Transactions on
Semiconductor Manufacturing, vol. 24, no. 2, pp. 202-207, 2011.
- 3
-
B. J. Baliga, ``Smart power technology: An elephantine opportunity,'' in Technical Digest International Electron Devices Meeting (IEDM), pp. 3-6,
1990.
- 4
-
B. J. Baliga, ``An overview of smart power technology,'' IEEE
Transactions on Electron Devices, vol. 38, no. 7, pp. 1568-1575, 1991.
- 5
-
M. Schrems, M. Knaipp, H. Enichlmair, V. Vescoli, R. Minixhofer, E. Seebacher,
F. Leisenberger, E. Wachmann, G. Schatzberger, and H. Gensinger, ``Scalable
high voltage CMOS technology for smart power and sensor applications,''
Elektrotechnik und Informationstechnik, vol. 125, pp. 109-117, April
2008.
- 6
-
A. Andreini, C. Contiero, and P. Galbiati, ``BCD technology for smart power
ICs,'' in Smart Power ICs (B. Murari, F. Bertotti, and G. Vignola,
eds.), ch. 1, pp. 1-52, Springer, 1996.
- 7
-
The Authoritative Dictionary of IEEE Standards Terms - IEEE 100,
Edition.
IEEE Press, 2000.
- 8
-
S. Pendharkar, ``Technology requirements for automotive electronics,'' in Proceedings IEEE Conference Vehicle Power and Propulsion, pp. 834-839,
2005.
- 9
-
J.-M. Park, H. Enichlmair, and R. Minixhofer, ``Hot-carrier behaviour of a 0.35
m high-voltage n-channel LDMOS transistor,'' in Proceedings
Simulation of Semiconductor Processes and Devices (SISPAD), pp. 369-372,
2007.
- 10
-
H. Casier, P. Moens, and K. Appeltans, ``Technology considerations for
automotive,'' in Proceedings European Solid-State Device Research
Conference (ESSDERC), pp. 37-41, 2004.
- 11
-
S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Springer-Verlag Wien New York, 1984.
- 12
-
K. Kramer, G. Nicholas, and W. Hitchon, Semiconductor Devices, a
Simulation Approach.
Prentice Hall Professional Technical Reference, 1997.
- 13
-
W. Fichtner, K. Esmark, and W. Stadler, ``TCAD software for ESD on-chip
protection design,'' in Technical Digest International Electron Devices
Meeting (IEDM), pp. 14.1.1-14.1.4, 2001.
- 14
-
W. Fichtner, N. Braga, M. Ciappa, V. Mickevicius, and M. Schenkel, ``Progress
in technology CAD for power devices, circuits and systems,'' in Proceedings International Symposium on Power Semiconductor Devices and IC's
(ISPSD), pp. 1-9, 2005.
- 15
-
T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, ``A review of
hydrodynamic and energy-transport models for semiconductor device
simulation,'' Proceedings of the IEEE, vol. 91, no. 2, pp. 251-274,
2003.
- 16
-
C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation: The
Monte-Carlo Perspective.
Springer, 2003.
- 17
-
S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello,
J.-M. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher,
R. Minixhofer, H. Ceric, and T. Grasser, ``Hot-carrier degradation modeling
using full-band Monte-Carlo simulations,'' in Proceedings IEEE
International Symposium on the Physical and Failure Analysis of Integrated
Circuits (IPFA), pp. 1-5, 2010.
- 18
-
S. Tyaginov, I. Starkov, O. Triebl, H. Ceric, T. Grasser, H. Enichlmair, J.-M.
Park, and C. Jungemann, ``Secondary generated holes as a crucial component
for modeling of HC degradation in high-voltage n-MOSFET,'' in Proceedings Simulation of Semiconductor Processes and Devices (SISPAD),
pp. 123-126, 2011.
- 19
-
B. J. Baliga, ``The future of power semiconductor device technology,'' Proceedings of the IEEE, vol. 89, no. 6, pp. 822-832, 2001.
- 20
-
J. G. Bauer, T. Duetemeyer, E. Falck, C. Schaeffer, G. Schmidt, and H. Schulze,
``Investigations on 6.5kV trench IGBT and adapted EmCon diode,'' in
Proceedings International Symposium on Power Semiconductor Devices and
IC's (ISPSD), pp. 5-8, 2007.
- 21
-
M. Vellvehi, D. Flores, X. Jorda, S. Hidalgo, J. Rebollo, L. Coulbeck, and
P. Waind, ``Design considerations for 6.5 kV IGBT devices,'' Microelectronics Journal, vol. 35, no. 3, pp. 269-275, 2004.
- 22
-
T. Fujii, K. Yoshikawa, T. Koga, A. Nishiura, Y. Takahashi, H. Kakiki,
M. Ichijyou, and Y. Seki, ``4.5 kV-2000 A power pack IGBT (ultra high
power flat-packaged PT type RC-IGBT),'' in Proceedings International
Symposium on Power Semiconductor Devices and IC's (ISPSD), pp. 33-36,
2000.
- 23
-
C. Kleint, ``Julius Edgar Lilienfeld: Life and profession,'' Progress in Surface Science, vol. 57, pp. 253-327, April 1998.
- 24
-
E. J. Lilienfeld, ``Method and apparatus for controlling electric currents,''
Jan 1930, U.S. Patent 1745175.
- 25
-
E. J. Lilienfeld, ``Device for controlling electric current,'' March 1933, U.S.
Patent 1900018.
- 26
-
M. M. Atalla, E. Tannenbaum, and E. J. Scheibner, ``Stabilization of silicon
surfaces by thermally grown oxides,'' Bell System Technical Journal,
vol. 38, pp. 749-783, 1959.
- 27
-
R. G. Arns, ``The other transistor: early history of the metal-oxide
semiconductor field-effect transistor,'' Engineering Science and
Education Journal, vol. 7, no. 5, pp. 233-240, 1998.
- 28
-
B. J. Baliga, ``Trends in power semiconductor devices,'' IEEE
Transactions on Electron Devices, vol. 43, no. 10, pp. 1717-1731, 1996.
- 29
-
B. J. Baliga, Power Semiconductor Devices.
PWS Publishing Company, 1995.
- 30
-
B. J. Baliga, M. S. Adler, R. P. Love, P. V. Gray, and N. D. Zommer, ``The
insulated gate transistor: A new three-terminal MOS-controlled bipolar
power device,'' IEEE Transactions on Electron Devices, vol. 31,
no. 6, pp. 821-828, 1984.
- 31
-
T. R. Efland, C.-Y. Tsai, and S. Pendharkar, ``Lateral thinking about power
devices (LDMOS),'' in Technical Digest International Electron Devices
Meeting (IEDM), pp. 679-682, 1998.
- 32
-
S. Sze, Physics of Semiconductor Devices.
New York: Wiley, second ed., 1981.
- 33
-
J. Appels and H. Vaes, ``High voltage thin layer devices (RESURF devices),''
in Technical Digest International Electron Devices Meeting (IEDM),
vol. 25, pp. 238 - 241, 1979.
- 34
-
P. Moens and G. Van den bosch, ``Reliability assessment of integrated power
transistors: Lateral DMOS versus vertical DMOS,'' Microelectronics
Reliability, vol. 48, no. 8-9, pp. 1300-1305, 2008.
- 35
-
M. Amato and V. Rumennik, ``Comparison of lateral and vertical DMOS specific
on-resistance,'' in Technical Digest International Electron Devices
Meeting (IEDM), vol. 31, pp. 736-739, 1985.
- 36
-
M. Knaipp, G. Rohrer, R. Minixhofer, and E. Seebacher, ``Investigations on the
high current behavior of lateral diffused high-voltage transistors,'' IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1711-1720,
2004.
- 37
-
P. Moens, S. Bychikhin, K. Reynders, D. Pogany, E. Gornik, and M. Tack,
``Dynamics of integrated vertical DMOS transistors under 100-ns TLP
stress,'' IEEE Transactions on Electron Devices, vol. 52, no. 5,
pp. 1008-1013, 2005.
- 38
-
A. S. Grove, O. Leistiko, Jr., and W. W. Hooper, ``Effect of surface fields
on the breakdown voltage of planar silicon p-n junctions,'' IEEE
Transactions on Electron Devices, vol. 14, no. 3, pp. 157-162, 1967.
- 39
-
D. Scharfetter and H. Gummel, ``Large-signal analysis of a silicon read diode
oscillator,'' IEEE Transactions on Electron Devices, vol. 16, no. 1,
pp. 64-77, 1969.
- 40
-
A. W. Ludikhuize, ``A review of RESURF technology,'' in Proceedings
International Symposium on Power Semiconductor Devices and IC's (ISPSD),
pp. 11-18, 2000.
- 41
-
Z. Hossain, T. Ishigwo, L. Tu, H. Corleto, F. Kuramae, and R. Nair,
``Field-plate effects on the breakdown voltage of an integrated high-voltage
LDMOS transistor,'' in Proceedings International Symposium on Power
Semiconductor Devices and IC's (ISPSD), pp. 237-240, 2004.
- 42
-
J. Roig, D. Flores, J. Urresti, S. Hidalgo, and J. Rebollo, ``Modeling of
non-uniform heat generation in LDMOS transistors,'' Solid-State
Electronics, vol. 49, no. 1, pp. 77-84, 2005.
- 43
-
S. Gao, J. Chen, D. Ke, and L. Liu, ``Analytical model for surface electrical
field of double RESURF LDMOS with field plate,'' in Proceedings
Solid-State and Integrated Circuit Technology (ICSICT), pp. 1324-1326,
2006.
- 44
-
P. M. Shenoy, A. Bhalla, and G. M. Dolny, ``Analysis of the effect of charge
imbalance on the static and dynamic characteristics of the super junction
MOSFET,'' in Proceedings International Symposium on Power
Semiconductor Devices and IC's (ISPSD), pp. 99-102, 1999.
- 45
-
L. Lorenz, G. Deboy, A. Knapp, and M. Marz, ``COOLMOS
- a new
milestone in high voltage power MOS,'' in Proceedings International
Symposium on Power Semiconductor Devices and IC's (ISPSD), pp. 3-10,
1999.
- 46
-
A. Andreini, C. Contiero, and P. Galbiati, ``A new integrated silicon gate
technology combining bipolar linear, CMOS logic, and DMOS power parts,''
IEEE Transactions on Electron Devices, vol. 33, no. 12,
pp. 2025-2030, 1986.
- 47
-
W. Horn and H. Zitta, ``A robust smart power bandgap reference circuit for use
in an automotive environment,'' IEEE Journal of Solid-State Circuits,
vol. 37, no. 7, pp. 949-952, 2002.
- 48
-
T. Efland, J. Devore, A. Hastings, S. Pendharkar, and R. Teggatz, ``Bipolar
issues in advanced power BiCMOS technology,'' in Proceedings
Bipolar/BiCMOS Circuits and Technology Meeting, pp. 20-27, 2000.
- 49
-
S. Mukherjee, ``Technologies for high voltage ICs,'' in Smart Power
ICs (K. Itoh, T. Lee, T. Sakurai, and D. Schmitt-Landsiedel, eds.), ch. 2,
pp. 53-78, Springer, 1996.
- 50
-
S. L. Wong, S. Venkitasubrahmanian, M. J. Kim, and J. C. Young, ``Design of a
60-V 10-A intelligent power switch using standard cells,'' IEEE
Journal of Solid-State Circuits, vol. 27, no. 3, pp. 429-432, 1992.
- 51
-
A. Moscatelli, A. Merlini, G. Croce, P. Galbiati, and C. Contiero, ``LDMOS
implementation in a 0.35
m BCD technology (BCD6),'' in Proceedings International Symposium on Power Semiconductor Devices and IC's
(ISPSD), pp. 323-326, 2000.
- 52
-
T. Trajkovic, N. Udugampola, V. Pathirana, A. Mihaila, F. Udrea, G. A. J.
Amaratunga, B. Koutny, K. Ramkumar, and S. Geha, ``High frequency 700V
PowerBrane LIGBTs in 0.35
m bulk CMOS technology,'' in Proceedings International Symposium on Power Semiconductor Devices and IC's
(ISPSD), pp. 307-310, 2009.
- 53
-
F. Kawai, T. Onishi, T. Kamiya, H. Ishimabushi, H. Eguchi, K. Nakaharna,
H. Aoki, and K. Hamada, ``Multi-voltage SOI-BiCDMOS for 14V&42V
automotive applications,'' in Proceedings International Symposium on
Power Semiconductor Devices and IC's (ISPSD), pp. 165-168, 2004.
- 54
-
Y.-K. Leung, Y. Suzuki, K. E. Goodson, and S. S. Wong, ``Self-heating effect in
lateral DMOS on SOI,'' in Proceedings International Symposium on
Power Semiconductor Devices and IC's (ISPSD), pp. 136-140, 1995.
- 55
-
H. Lim, F. Udrea, D. Garner, and W. Milne, ``Modelling of self-heating effect
in thin SOI and partial SOI LDMOS power devices,'' Solid-State
Electronics, vol. 43, no. 7, pp. 1267-1280, 1999.
- 56
-
W. Denson, ``The history of reliability prediction,'' IEEE Transactions
on Reliability, vol. 47, no. 3, pp. SP321-SP328, 1998.
- 57
-
A. Goel and R. Graves, ``Electronic systems reliability: Collating prediction
models,'' IEEE Transactions on Device and Materials Reliability,
vol. 6, no. 2, pp. 258-265, 2006.
- 58
-
I. Snook, J. Marshall, and R. Newman, ``Physics of failure as an integrated
part of design for reliability,'' in Proceedings Annual Reliability and
Maintainability Symposium, pp. 46-54, 2003.
- 59
-
Reliability Prediction of Electronic Equipment (MIL-HDBK-217F Notice 2).
Military Handbook, U.S. Department of Defense, 1995.
- 60
-
M. Pecht and F. Nash, ``Predicting the reliability of electronic equipment,''
Proceedings of the IEEE, vol. 82, no. 7, pp. 992-1004, 1994.
- 61
-
M. Cushing, D. Mortin, T. Stadterman, and A. Malhotra, ``Comparison of
electronics-reliability assessment approaches,'' IEEE Transactions on
Reliability, vol. 42, no. 4, pp. 542-546, 1993.
- 62
-
S. Morris and J. Reilly, ``MIL-HDBK-217 - A favorite target,'' in Proceedings Annual Reliability and Maintainability Symposium, pp. 503-509,
1993.
- 63
-
M. Ohring, Reliability and Failure of Electronic Materials and Devices.
Academic Press, 1998.
- 64
-
H. H. Huston and C. P. Clarke, ``Reliability defect detection and screening
during processing-theory and implementation,'' in Proceedings IEEE
International Reliability Physics Symposium (IRPS), pp. 268-275, 1992.
- 65
-
K. L. Wong, ``The bathtub does not hold water any more,'' Quality and
Reliability Engineering International, vol. 4, no. 3, pp. 279-282, 1988.
- 66
-
K. L. Wong, ``The roller-coaster curve is in,'' Quality and Reliability
Engineering International, vol. 5, no. 1, pp. 29-36, 1989.
- 67
-
K. L. Wong, ``The physical basis for the roller-coaster hazard rate curve for
electronics,'' Quality and Reliability Engineering International,
vol. 7, no. 6, pp. 189-495, 1991.
- 68
-
W. Kuo and M. J. Zuo, Optimal Reliability Modeling - Principles and
Applications.
Wiley, 2003.
- 69
-
M. Bebbington and C.-D. Lai, ``Lifetime analysis of incandescent lamps: The
Menon-Agrawal model revisited,'' Reliability & Risk Analysis:
Theory & Applications, vol. 1, no. 1, pp. 97-108, 2008.
- 70
-
R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel,
and H. E. Maes, ``New insights in the relation between electron trap
generation and the statistical properties of oxide breakdown,'' IEEE
Transactions on Electron Devices, vol. 45, no. 4, pp. 904-911, 1998.
- 71
-
M. Pecht, ``A model for moisture induced corrosion failures in microelectronic
packages,'' IEEE Transactions on Components, Hybrids, and
Manufacturing Technology, vol. 13, no. 2, pp. 383-389, 1990.
- 72
-
C. Chauvet and C. Laurent, ``Weibull statistics in short-term dielectric
breakdown of thin polyethylene films,'' IEEE Transactions on
Electrical Insulation, vol. 28, no. 1, pp. 18-29, 1993.
- 73
-
R. Hill and E. Okoroafor, ``Weibull statistics of fibre bundle failure using
mechanical and acoustic emission testing: the influence of interfibre
friction,'' Composites, vol. 26, no. 10, pp. 699-705, 1995.
- 74
-
W. Kuo, W.-T. K. Chien, and T. Kim, Reliability, Yield, and Stress
Burn-In.
Springer US, 1998.
- 75
-
K. O. Kim, W. Kuo, and W. Luo, ``A relation model of gate oxide yield and
reliability,'' Microelectronics Reliability, vol. 44, no. 3,
pp. 425-434, 2004.
- 76
-
T. Kim and W. Kuo, ``Modeling manufacturing yield and reliability,'' IEEE Transactions on Semiconductor Manufacturing, vol. 12, no. 4,
pp. 485-492, 1999.
- 77
-
J. C. Lee, C. Ih-Chin, and H. Chenming, ``Modeling and characterization of gate
oxide reliability,'' IEEE Transactions on Electron Devices, vol. 35,
no. 12, pp. 2268-2278, 1988.
- 78
-
F. Kuper, J. van der Pol, E. Ooms, T. Johnson, R. Wijburg, W. Koster, and
D. Johnston, ``Relation between yield and reliability of integrated circuits:
experimental results and application to continuous early failure rate
reduction programs,'' in Proceedings IEEE International Reliability
Physics Symposium (IRPS), pp. 17-21, 1996.
- 79
-
A. Buerke, H. Wendrock, and K. Wetzig, ``Study of electromigration damage in
Al interconnect lines inside a SEM,'' Crystal Research and
Technology, vol. 35, no. 6-7, pp. 721-730, 2000.
- 80
-
J. R. Black, ``Electromigration-a brief survey and some recent results,'' IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, 1969.
- 81
-
M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, ``Ultrathin
(
nm) SiO
and Si-O-N gate dielectric layers for silicon
microelectronics: Understanding the processing, structure, and physical and
electrical limits,'' Journal of Applied Physics, vol. 90, no. 5,
pp. 2057-2121, 2001.
- 82
-
E. Harari, ``Conduction and trapping of electrons in highly stressed ultrathin
films of thermal SiO
,'' Applied Physics Letters, vol. 30, no. 11,
pp. 601-603, 1977.
- 83
-
S. Lombardo, J. H. Stathis, B. P. Linder, K. L. Pey, F. Palumbo, and C. H.
Tung, ``Dielectric breakdown mechanisms in gate oxides,'' Journal of
Applied Physics, vol. 98, no. 12, pp. 121301-1-36, 2005.
- 84
-
J. S. Suehle, ``Ultrathin gate oxide reliability: Physical models, statistics,
and characterization,'' IEEE Transactions on Electron Devices,
vol. 49, no. 6, pp. 958-971, 2002.
- 85
-
D. A. Buchanan, J. H. Stathis, E. Cartier, and D. J. DiMaria, ``On the
relationship between stress induced leakage currents and catastrophic
breakdown in ultra-thin SiO
based dielectrics,'' Microelectronic
Engineering, vol. 36, no. 1-4, pp. 329-332, 1997.
- 86
-
L. Pantisano and K. Cheung, ``Stress-induced leakage current (SILC) and oxide
breakdown: are they from the same oxide traps?,'' IEEE Transactions on
Device and Materials Reliability, vol. 1, no. 2, pp. 109-112, 2001.
- 87
-
D. J. DiMaria, D. A. Buchanan, J. H. Stathis, and R. E. Stahlbush, ``Interface
states induced by the presence of trapped holes near the
siliconâsilicon-dioxide interface,'' Journal of Applied Physics,
vol. 77, no. 5, pp. 2032-2040, 1995.
- 88
-
D. J. DiMaria, E. Cartier, and D. Arnold, ``Impact ionization, trap creation,
degradation, and breakdown in silicon dioxide films on silicon,'' Journal of Applied Physics, vol. 73, no. 7, pp. 3367-3348, 1993.
- 89
-
I. C. Chen, S. Holland, K. K. Young, C. Chang, and C. Hu, ``Substrate hole
current and oxide breakdown,'' Applied Physics Letters, vol. 49,
no. 11, pp. 669-671, 1986.
- 90
-
K. F. Schuegraf and C. Hu, ``Metal-oxide-semiconductor field-effect-transistor
substrate current during Fowler-Nordheim tunneling stress and silicon
dioxide reliability,'' Journal of Applied Physics, vol. 76, no. 6,
pp. 3695-3700, 1994.
- 91
-
R. Degraeve, B. Kaczer, and G. Groeseneken, ``Degradation and breakdown in thin
oxide layers: mechanisms, models and reliability prediction,'' Microelectronics Reliability, vol. 39, no. 10, pp. 1445-1460, 1999.
- 92
-
J. W. McPherson and H. C. Mogul, ``Underlying physics of the thermochemical E
model in describing low-field time-dependent dielectric breakdown in
SiO
thin films,'' Journal of Applied Physics, vol. 84, no. 3,
pp. 1513-1523, 1998.
- 93
-
J. H. Stathis, ``Percolation models for gate oxide breakdown,'' Journal of
Applied Physics, vol. 86, no. 10, pp. 5757-5766, 1999.
- 94
-
B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch, M. A. Alam, G. B. Alers,
T. W. Sorsch, G. L. Timp, F. Baumann, C. T. Liu, Y. Ma, and D. Hwang,
``Ultra-thin gate dielectrics: they break down, but do they fail?,'' in Technical Digest International Electron Devices Meeting (IEDM),
pp. 73-76, 1997.
- 95
-
R. Degraeve, B. Kaczer, and G. Groeseneken, ``Reliability: a possible
showstopper for oxide thickness scaling?,'' Semiconductor Science and
Technology, vol. 15, pp. 434-444, 2000.
- 96
-
T. Grasser and B. Kaczer, ``Negative bias temperature instability: Recoverable
versus permanent degradation,'' in Proceedings European Solid-State
Device Research Conference (ESSDERC), pp. 127-130, 2007.
- 97
-
M. Alam and S. Mahapatra, ``A comprehensive model of pMOS NBTI
degradation,'' Microelectronics Reliability, vol. 45, no. 1,
pp. 71-81, 2005.
- 98
-
R. Entner, T. Grasser, O. Triebl, H. Enichlmair, and R. Minixhofer, ``Negative
bias temperature instability modeling for high-voltage oxides at different
stress temperatures,'' Microelectronics Reliability, vol. 47, no. 4-5,
pp. 697-699, 2007.
- 99
-
T. Grasser, W. Gös, and B. Kaczer, ``Dispersive transport and negative bias
temperature instability: Boundary conditions, initial conditions, and
transport models,'' IEEE Transactions on Device and Materials
Reliability, vol. 8, no. 1, pp. 79-97, 2008.
- 100
-
T. Grasser, P. Wagner, P. Hehenberger, W. Gös, and B. Kaczer, ``A rigorous
study of measurement techniques for negative bias temperature instability,''
IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3,
pp. 526-535, 2008.
- 101
-
T. Grasser, B. Kaczer, W. Gös, T. Aichinger, P. Hehenberger, and
M. Nelhiebel, ``A two-stage model for negative bias temperature
instability,'' in Proceedings IEEE International Reliability Physics
Symposium (IRPS), 2009.
- 102
-
T. Grasser, B. Kaczer, W. Gös, T. Aichinger, P. Hehenberger, and
M. Nelhiebel, ``Understanding negative bias temperature instability in the
context of hole trapping,'' Microelectronic Engineering, vol. 86,
no. 7-9, pp. 1876-1882, 2009.
- 103
-
K. Kawamoto and S. Takahashi, ``An advanced no-snapback LDMOSFET with
optimized breakdown characteristics of drain n-n
diodes,'' IEEE
Transactions on Electron Devices, vol. 51, no. 9, pp. 1432-1440, 2004.
- 104
-
D. Kontos, K. Domanski, R. Gauthier, K. Chatty, M. Muhammad, C. Seguin,
R. Halbach, C. Russ, and D. Alvarez, ``Investigation of external latchup
robustness of dual and triple well designs in 65nm bulk CMOS technology,''
in Proceedings IEEE International Reliability Physics Symposium
(IRPS), pp. 145-150, 2006.
- 105
-
D. Lin, ``ESD sensitivity and VLSI technology trends: thermal breakdown and
dielectric breakdown,'' Journal of Electrostatics, vol. 33, no. 3,
pp. 251-271, 1994.
- 106
-
S. Voldman, ``A review of electrostatic discharge (ESD) in advanced
semiconductor technology,'' Microelectronics Reliability, vol. 44,
pp. 33-46, 2004.
- 107
-
A. A. Salman, R. Gauthier, C. Putnam, P. Riess, M. Muhammad, M. Woo, and D. E.
Ioannou, ``ESD-induced oxide breakdown on self-protecting GG-nMOSFET in
0.1-
m CMOS technology,'' IEEE Transactions on Device and
Materials Reliability, vol. 3, no. 3, pp. 79-84, 2003.
- 108
-
J. E. Vinson and J. J. Liou, ``Electrostatic discharge in semiconductor
devices: protection techniques,'' Proceedings of the IEEE, vol. 88,
no. 12, pp. 1878-1902, 2000.
- 109
-
V. De Heyn, G. Groeseneken, B. Keppens, M. Natarajan, L. Vacaresse, and
G. Gallopyn, ``Design and analysis of new protection structures for smart
power technology with controlled trigger and holding voltage,'' in Proceedings IEEE International Reliability Physics Symposium (IRPS),
pp. 253-258, 2001.
- 110
-
X. Gao, J. J. Liou, J. Bernier, G. Crof, W. Wong, and S. Vishwanathan,
``Optimization of on-chip ESD protection structures for minimal parasitic
capacitance,'' Microelectronics Reliability, vol. 43, no. 5,
pp. 725-733, 2003.
- 111
-
J. A. Salcedo, J. J. Liou, Z. Liu, and J. E. Vinson, ``TCAD methodology for
design of SCR devices for electrostatic discharge (ESD) applications,''
IEEE Transactions on Electron Devices, vol. 54, no. 4, pp. 822-832,
2007.
- 112
-
D. Flandre, ``Silicon-on-insulator technology for high temperature metal oxide
semiconductor devices and circuits,'' Materials Science and Engineering:
B, vol. 29, no. 1-3, pp. 7-12, 1995.
- 113
-
R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, and M. Christopher,
``The changing automotive environment: high-temperature electronics,'' IEEE Transactions on Electronics Packaging Manufacturing, vol. 27, no. 3,
pp. 164-176, 2004.
- 114
-
W. Wondrak, ``Physical limits and lifetime limitations of semiconductor devices
at high temperatures,'' Microelectronics Reliability, vol. 39,
no. 6-7, pp. 1113-1120, 1999.
- 115
-
S. Reggiani, M. Valdinoci, L. Colalongo, M. Rudan, G. Baccarani, A. Stricker,
F. Illien, N. Felber, W. Fichtner, and L. Zullino, ``Electron and hole
mobility in silicon at large operating temperatures. Part I: Bulk
mobility,'' IEEE Transactions on Electron Devices, vol. 49, no. 3,
pp. 490-499, 2002.
- 116
-
S. Reggiani, E. Gnani, M. Rudan, G. Baccarani, C. Corvasce, D. Barlini,
M. Ciappa, W. Fichtner, M. Denison, N. Jensen, G. Groos, and M. Stecher,
``Experimental extraction of the electron impact-ionization coefficient at
large operating temperatures,'' in Technical Digest International
Electron Devices Meeting (IEDM), pp. 407-410, 2004.
- 117
-
D. J. Frank, ``Power-constrained CMOS scaling limits,'' IBM Journal of
Research and Development, vol. 46, no. 2, pp. 235-244, 2002.
- 118
-
A. Bar-Cohen and M. Iyengar, ``Design and optimization of air-cooled heat sinks
for sustainable development,'' IEEE Transactions on Components and
Packaging Technologies, vol. 25, no. 4, pp. 584-591, 2002.
- 119
-
Y. Li and C. Wong, ``Recent advances of conductive adhesives as a lead-free
alternative in electronic packaging: Materials, processing, reliability and
applications,'' Materials Science and Engineering: R: Reports, vol. 51,
no. 1-3, pp. 1-35, 2006.
- 120
-
I
E, MINIMOS-NT 2.1 User's Guide.
Institut für Mikroelektronik, Technische Universität
Wien, Austria, 2004.
- 121
-
Global TCAD Solutions, GTS Framework.
http://www.globaltcad.com.
- 122
-
C. Jacoboni and L. Reggiani, ``The Monte Carlo method for the solution of
charge transport in semiconductors with application to covalent materials,''
Reviews of Modern Physics, vol. 55, no. 3, pp. 645-705, 1983.
- 123
-
M. Lundstrom, Fundamentals of Carrier Transport.
Cambridge University Press, 2000.
- 124
-
G. A. Baraff, ``Maximum anisotropy approximation for calculating electron
distributions; application to high field transport in semiconductors,'' Physical Review, vol. 133, no. 1A, pp. A26-A33, 1964.
- 125
-
C. Jungemann, A. T. Pham, B. Meinerzhagen, C. Ringhofer, and M. Bollhofer,
``Stable discretization of the Boltzmann equation based on spherical
harmonics, box integration, and a maximum entropy dissipation principle,''
Journal of Applied Physics, vol. 100, no. 2, pp. 024502-1-13, 2006.
- 126
-
M. Vecchi and M. Rudan, ``Modeling electron and hole transport with full-band
structure effects by means of the spherical-harmonics expansion of the
BTE,'' IEEE Transactions on Electron Devices, vol. 45, no. 1,
pp. 230-238, 1998.
- 127
-
G. Wachutka, ``Rigorous thermodynamic treatment of heat generation and
conduction in semiconductor device modeling,'' IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 11,
pp. 1141-1149, 1990.
- 128
-
R. Stratton, ``Semiconductor current-flow equations (diffusion and
degeneracy),'' IEEE Transactions on Electron Devices, vol. 19,
no. 12, pp. 1288-1292, 1972.
- 129
-
W. VanRoosbroeck, ``Theory of flow of electrons and holes in germanium and
other semiconductors,'' Bell System Technical Journal, vol. 29,
pp. 560-607, 1950.
- 130
-
T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, ``Using six moments of
Boltzmannâs transport equation for device simulation,'' Journal of
Applied Physics, vol. 90, no. 5, pp. 2389-2396, 2001.
- 131
-
R. Stratton, ``Diffusion of hot and cold electrons in semiconductor barriers,''
Physical Review, vol. 126, no. 6, pp. 2002-2014, 1962.
- 132
-
K. Bløtekjær, ``Transport equations for electrons in two-valley
semiconductors,'' IEEE Transactions on Electron Devices, vol. 17,
no. 1, pp. 38-47, 1970.
- 133
-
T. Grasser and S. Selberherr, ``Limitations of hydrodynamic and
energy-transport models,'' in Proceedings International Workshop on the
Physics of Semiconductor Devices (IWPSD), pp. 584-591, 2001.
- 134
-
T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr, ``Characterization of
the hot electron distribution function using six moments,'' Journal of
Applied Physics, vol. 91, no. 6, pp. 3869-3879, 2002.
- 135
-
T. Grasser, C. Jungemann, H. Kosina, B. Meinerzhagen, and S. Selberherr,
``Advanced transport models for sub-micrometer devices,'' in Proceedings
Simulation of Semiconductor Processes and Devices (SISPAD), pp. 1-8,
2004.
- 136
-
V. Sverdlov, E. Ungersboeck, H. Kosina., and S. Selberherr, ``Current transport
models for nanoscale semiconductor devices,'' Materials Science and
Engineering: R: Reports, vol. 58, no. 6, pp. 228-270, 2008.
- 137
-
S. Vitanov, V. Palankovski, R. Quay, and E. Langer, ``Two-dimensional numerical
simulation of AlGaN/GaN HEMTs,'' in Book of Proceedings TARGET
Days, pp. 81-84, 2006.
- 138
-
S. Selberherr, W. Hänsch, M. Seavey, and J. Slotboom, ``The evolution of the
MINIMOS mobility model,'' Solid-State Electronics, vol. 33, no. 11,
pp. 1425-1436, 1990.
- 139
-
C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, ``A physically based
mobility model for numerical simulation of nonplanar devices,'' IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 7, no. 11, pp. 1164-1171, 1988.
- 140
-
V. M. J. Agostinelli, H. Shin, and A. F. J. Tasch, ``A comprehensive model for
inversion layer hole mobility for simulation of submicrometer MOSFET's,''
IEEE Transactions on Electron Devices, vol. 38, no. 1, pp. 151-159,
1991.
- 141
-
M. Darwish, J. Lentz, M. Pinto, P. Zeitzoff, T. Krutsick, and H. H. Vuong, ``An
improved electron and hole mobility model for general purpose device
simulation,'' IEEE Transactions on Electron Devices, vol. 44, no. 9,
pp. 1529-1538, 1997.
- 142
-
B. Neinhüs, C. Nguyen, C. Jungemann, and B. Meinerzhagen, ``A CPU efficient
electron mobility model for MOSFET simulation with quantum corrected charge
densities,'' in Proceedings European Solid-State Device Research
Conference (ESSDERC), pp. 332-335, 2000.
- 143
-
T. Grasser, R. Entner, O. Triebl, H. Enichlmair, and R. Minixhofer, ``TCAD
modeling of negative bias temperature instability,'' in Proceedings
Simulation of Semiconductor Processes and Devices (SISPAD), pp. 330-333,
2006.
- 144
-
V.-H. Chan and J. Chung, ``Two-stage hot-carrier degradation and its impact on
submicrometer LDD NMOSFET lifetime prediction,'' IEEE Transactions
on Electron Devices, vol. 42, no. 5, pp. 957-962, 1995.
- 145
-
S. Sun and J. Plummer, ``Electron mobility in inversion and accumulation layers
on thermally oxidized silicon surfaces,'' IEEE Transactions on
Electron Devices, vol. 27, no. 8, pp. 1497-1508, 1980.
- 146
-
H.-S. Wong, M. White, J. Krutsick, and R. Booth, ``Modeling of transconductance
degradation and extraction of threshold voltage in thin oxide MOSFETâs,''
Solid-State Electronics, vol. 30, no. 9, pp. 953-968, 1987.
- 147
-
D. Caughey and R. Thomas, ``Carrier mobilities in silicon empirically related
to doping and field,'' Proceedings of the IEEE, vol. 55, no. 12,
pp. 2192-2193, 1967.
- 148
-
R. Jaggi and H. Weibel, ``High-field electron drift velocities and current
densities in silicon,'' Helvetica Physica Acta, vol. 42, pp. 631-632,
1969.
- 149
-
R. Jaggi, ``High-field drift velocities in silicon and germanium,'' Helvetica Physica Acta, vol. 42, pp. 941-943, 1969.
- 150
-
S. Dhar, H. Kosina, G. Karlowatz, S. E. Ungersboeck, T. Grasser, and
S. Selberherr, ``High-field electron mobility model for strained-silicon
devices,'' IEEE Transactions on Electron Devices, vol. 53, no. 12,
pp. 3054-3062, 2006.
- 151
-
T. Grasser and M. Karner, Modellierung elektronischer Bauelemente.
Institute for Microelectronics, TU Vienna, 2006.
Lecture Notes.
- 152
-
W. Shockley and W. Read, ``Statistics of the recombinations of holes and
electrons,'' Physical Review, vol. 87, no. 5, pp. 835-842, 1952.
- 153
-
R. Hall, ``Electron-hole recombination in germanium,'' Physical Review,
vol. 87, no. 2, p. 387, 1952.
- 154
-
D. Fleetwood, H. Xiong, Z.-Y. Lu, C. Nicklaw, J. Felix, R. Schrimpf, and
S. Pantelides, ``Unified model of hole trapping, 1/f noise, and thermally
stimulated current in MOS devices,'' IEEE Transactions on Nuclear
Science, vol. 49, no. 6, pp. 2674-2683, 2002.
- 155
-
J. Brugler and P. Jespers, ``Charge pumping in MOS devices,'' IEEE
Transactions on Electron Devices, vol. 16, no. 3, pp. 297-302, 1969.
- 156
-
P. Habas and S. Selberherr, ``A closed-loop extraction of the spatial
distribution of interface traps based on numerical model of the
charge-pumping experiment,'' in Proceedings Solid State Devices and
Materials (SSDM), pp. 170-172, 1992.
- 157
-
J. Dziewior and W. Schmid, ``Auger coefficients for highly doped and highly
excited silicon,'' Applied Physics Letters, vol. 31, no. 5,
pp. 346-348, 1977.
- 158
-
L. Huldt, N. G. Nilsson, and K. G. Svantesson, ``The temperature dependence of
band-to-band Auger recombination in silicon,'' Applied Physics
Letters, vol. 35, no. 10, pp. 776-777, 1979.
- 159
-
G. Hurkx, D. Klaassen, and M. Knuvers, ``A new recombination model for device
simulation including tunneling,'' IEEE Transactions on Electron
Devices, vol. 39, no. 2, pp. 331-338, 1992.
- 160
-
H.-M. Lee, C.-J. Liu, C.-W. Hsu, M.-S. Liang, Y.-C. King, and C.-H. Hsu, ``New
trap-assisted band-to-band tunneling induced gate current model for p-channel
metal-oxide-semiconductor field effect transistors with sub-3 nm oxides,''
Japanese Journal of Applied Physics, vol. 40, pp. 1218-1221, 2001.
- 161
-
J. Whitfield, C. Gill, J. Yang, H. Xu, C. Zhan, B. Baumert, and M. Zunino,
``ESD MM failures resulting from transient reverse currents,'' in Proceedings IEEE International Reliability Physics Symposium (IRPS),
pp. 136-139, 2006.
- 162
-
V. d'Alessandro and N. Rinaldi, ``A critical review of thermal models for
electro-thermal simulation,'' Solid-State Electronics, vol. 46, no. 4,
pp. 487-496, 2002.
- 163
-
P. Galy, V. Berland, B. Foucher, A. Guilhaume, J. Chante, S. Bardy, and
F. Blanc, ``Experimental and 3D simulation correlation of a gg-nMOS
transistor under high current pulse,'' Microelectronics Reliability,
vol. 42, no. 9-11, pp. 1299-1302, 2002.
- 164
-
H. Xie, R. Zhan, A. Wang, and R. Gafiteanu, ``Real 3D electro-thermal
simulation and analysis for ESD protection structures,'' in Proceedings IEEE Devices, Circuits and Systems, vol. 1, pp. 61-64, 2004.
- 165
-
S. Gaur and D. Navon, ``Two-dimensional carrier flow in a transistor structure
under nonisothermal conditions,'' IEEE Transactions on Electron
Devices, vol. 23, no. 1, pp. 50-57, 1976.
- 166
-
M. Adler, ``Accurate calculations of the forward drop and power dissipation in
thyristors,'' IEEE Transactions on Electron Devices, vol. 25, no. 1,
pp. 16-22, 1978.
- 167
-
J. Slotboom and H. de Graaff, ``Bandgap narrowing in silicon bipolar
transistors,'' IEEE Transactions on Electron Devices, vol. 24, no. 8,
pp. 1123-1125, 1977.
- 168
-
S. Selberherr and E. Langer, ``Low temperature MOS device modeling,'' in Proceedings Workshop On Low Temperature Semiconductor Electronics,
pp. 68-72, 1989.
- 169
-
R. Tsu and L. Esaki, ``Tunneling in a finite superlattice,'' Applied
Physics Letters, vol. 22, no. 11, pp. 562-564, 1973.
- 170
-
R. H. Fowler and L. Nordheim, ``Electron emission in intense electric fields,''
Proceedings Royal Society A, vol. 119, no. 781, pp. 173-181, 1928.
- 171
-
M. Herrmann and A. Schenk, ``Field and high-temperature dependence of the long
term charge loss in erasable programmable read only memories: Measurements
and modeling,'' Journal of Applied Physics, vol. 77, no. 9,
pp. 4522-4540, 1995.
- 172
-
R. Entner, T. Grasser, S. Selberherr, A. Gehring, and H. Kosina, ``Modeling of
tunneling currents for highly degraded CMOS devices,'' in Proceedings
Simulation of Semiconductor Processes and Devices (SISPAD), pp. 219-222,
2005.
- 173
-
M. Wagner, M. Karner, and T. Grasser, ``Quantum correction models for modern
semiconductor devices,'' in Proceedings International Workshop on the
Physics of Semiconductor Devices (IWPSD), vol. 1, pp. 458-461, 2005.
- 174
-
G. Paasch and H. Übensee, ``A modified local density approximation,'' Physica status solidi (b), vol. 113, no. 1, pp. 165-178, 1982.
- 175
-
W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, ``Carrier transport
near the Si/SiO
interface of a MOSFET,'' Solid-State
Electronics, vol. 32, no. 10, pp. 839-849, 1989.
- 176
-
M. van Dort, P. Woerlee, and A. Walker, ``A simple model for quantisation
effects in heavily-doped silicon MOSFETs at inversion conditions,'' Solid-State Electronics, vol. 37, no. 3, pp. 411-414, 1994.
- 177
-
M. Vasicek, Advanced Macroscopic Transport Models.
Dissertation, Technische Universität Wien, Oktober 2009.
http://www.iue.tuwien.ac.at/phd/vasicek/.
- 178
-
V. Palankovski, Simulation of Heterojunction Bipolar Transistors.
Dissertation, Technische Universität Wien, 2000.
http://www.iue.tuwien.ac.at/phd/palankovski/.
- 179
-
J. Slotboom, G. Streutker, M. van Dort, P. Woerlee, A. Pruijmboom, and
D. Gravesteijn, ``Non-local impact ionization in silicon devices,'' in Technical Digest International Electron Devices Meeting (IEDM),
pp. 127-130, 8-11 Dec. 1991.
- 180
-
D. Cassi and B. Riccò, ``An analytical model of the energy distribution of
hot electrons,'' IEEE Transactions on Electron Devices, vol. 37,
no. 6, pp. 1514-1521, 1990.
- 181
-
A. Concannon, F. Piccinini, A. Mathewson, and C. Lombardi, ``The numerical
simulation of substrate and gate currents in MOS and EPROMs,'' in Technical Digest International Electron Devices Meeting (IEDM),
pp. 289-292, 1995.
- 182
-
T. Grasser, H. Kosina, and S. Selberherr, ``Influence of the distribution
function shape and the band structure on impact ionization modeling,'' Journal of Applied Physics, vol. 90, no. 12, pp. 6165-6171, 2001.
- 183
-
A. Gehring, Simulation of Tunneling in Semiconductor Devices.
Dissertation, Technische Universität Wien, November 2003.
http://www.iue.tuwien.ac.at/phd/gehring/.
- 184
-
P. G. Scrobohaci and T.-B. Tang, ``Modeling of the hot electron subpopulation
and its application to impact ionization in submicron silicon devices-Part
I: transport equations,'' IEEE Transactions on Electron Devices,
vol. 41, no. 7, pp. 1197-1205, 1994.
- 185
-
K. Sonoda, S. Dunham, M. Yamaji, K. Taniguchi, and C. Hamaguchi, ``Impact
ionization model using average energy and average square energy of
distribution function,'' Japanese Journal of Applied Physics, vol. 35,
no. 2B, pp. 818-825, 1996.
- 186
-
T. Grasser, H. Kosina, and S. Selberherr, ``Hot carrier effects within
macroscopic transport models,'' International Journal of High Speed
Electronics and Systems, vol. 13, no. 3, pp. 873-901, 2003.
- 187
-
T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr, ``Accurate impact
ionization model which accounts for hot and cold carrier populations,'' Applied Physics Letters, vol. 80, no. 4, pp. 613-615, 2002.
- 188
-
G. Karlowatz, E. Ungersboeck, W. Wessner, and H. Kosina, ``Full-band Monte
Carlo analysis of electron transport in arbitrarily strained silicon,'' in
Proceedings Simulation of Semiconductor Processes and Devices
(SISPAD), pp. 63-66, 6-8 Sept. 2006.
- 189
-
R. van Overstraeten and H. de Man, ``Measurement of the ionization rates in
diffused silicon p-n junctions,'' Solid-State Electronics, vol. 13,
no. 5, pp. 583-608, 1970.
- 190
-
Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices.
Cambridge University Press, 1998.
- 191
-
A. G. Chynoweth, ``Ionization rates for electrons and holes in silicon,'' Physical Review, vol. 109, pp. 1537-1540, Mar 1958.
- 192
-
W. Shockley, ``Problems related to p-n junctions in silicon,'' Solid-State
Electronics, vol. 2, no. 1, pp. 35-67, 1961.
- 193
-
P. A. Wolff, ``Theory of electron multiplication in silicon and germanium,''
Physical Review, vol. 95, no. 6, pp. 1415-1420, 1954.
- 194
-
Synopsys, Inc., originally published by ISE, ISE TCAD Release 9.5 -
ATLAS, 2003.
- 195
-
G. A. Baraff, ``Distribution functions and ionization rates for hot electrons
in semiconductors,'' Physical Review, vol. 128, no. 6, pp. 2507-2517,
1962.
- 196
-
C. R. Crowell and S. M. Sze, ``Temperature dependence of avalanche
multiplication in semiconductors,'' Applied Physics Letters, vol. 9,
no. 6, pp. 242-244, 1966.
- 197
-
A. Sutherland, ``An improved empirical fit to Baraff's universal curves for
the ionization coefficients of electron and hole multiplication in
semiconductors,'' IEEE Transactions on Electron Devices, vol. 27,
no. 7, pp. 1299-1300, 1980.
- 198
-
T. Lackner, ``Avalanche multiplication in semiconductors: A modification of
Chynoweth's law,'' Solid-State Electronics, vol. 34, no. 1,
pp. 33-42, 1991.
- 199
-
J. Slotboom, G. Streutker, G. Davids, and P. Hartog, ``Surface impact
ionization in silicon devices,'' in Technical Digest International
Electron Devices Meeting (IEDM), vol. 33, pp. 494-497, 1987.
- 200
-
M. van Dort, J. Slotboom, G. Streutker, and P. Woerlee, ``Lifetime calculations
of MOSFETs using depth-dependent non-local impact ionization,'' Microelectronics Journal, vol. 26, pp. 301-305, 1995.
- 201
-
C. Jungemann, S. Yamaguchi, and H. Goto, ``Is there experimental evidence for a
difference between surface and bulk impact ionization in silicon?,'' in Technical Digest International Electron Devices Meeting (IEDM),
pp. 383-386, 1996.
- 202
-
Y. Okuto and C. R. Crowell, ``Ionization coefficients in semiconductors: A
nonlocalized property,'' Physical Review B, vol. 10, no. 10,
pp. 4284-4296, 1974.
- 203
-
C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill,
``Hot-electron-induced MOSFET degradation - model, monitor, and
improvement,'' IEEE Transactions on Electron Devices, vol. 32, no. 2,
pp. 375-385, 1985.
- 204
-
Y. A. El-Mansy and D. M. Caughey, ``Modelling weak avalanche multiplication
currents in IGFETs and SOS transistors for CAD,'' in Technical
Digest International Electron Devices Meeting (IEDM), vol. 21, pp. 31-34,
1975.
- 205
-
B. Meinerzhagen, ``Consistent gate and substrate current modeling based on
energy transport and the lucky electron concept,'' in Technical Digest
International Electron Devices Meeting (IEDM), pp. 504-507, 1988.
- 206
-
K. Katayama and T. Toyabe, ``A new hot carrier simulation method based on full
3d hydrodynamic equations,'' in Technical Digest International Electron
Devices Meeting (IEDM), pp. 135-138, 1989.
- 207
-
Y. Apanovich, E. Lyumkis, B. Polsky, A. Shur, and P. Blakey, ``Steady-state and
transient analysis of submicron devices using energy balance and simplified
hydrodynamic models,'' IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 13, no. 6, pp. 702-711, 1994.
- 208
-
F. M. Bufler, Y. Asahi, H. Yoshimura, C. Zechner, A. Schenk, and W. Fichtner,
``Monte Carlo simulation and measurement of nanoscale n-MOSFETs,'' IEEE Transactions on Electron Devices, vol. 50, no. 2, pp. 418-424, 2003.
- 209
-
L. Keldysh, ``Concerning the theory of impact ionization in semiconductors,''
Soviet Physics JETP, vol. 21, pp. 1135-1144, 1965.
- 210
-
Y. Kamakura, H. Mizuno, M. Yamaji, M. Morifuji, K. Taniguchi, C. Hamaguchi,
T. Kunikiyo, and M. Takenaka, ``Impact ionization model for full band Monte
Carlo simulation,'' Journal of Applied Physics, vol. 75, no. 7,
pp. 3500-3506, 1994.
- 211
-
G. La Rosa and S. E. Rauch, III, ``Channel hot carrier effects in
n-MOSFET devices of advanced submicron CMOS technologies,'' Microelectronics Reliability, vol. 47, no. 4-5, pp. 552-558, 2007.
- 212
-
S. E. Rauch, III, F. J. Guarin, and G. La Rosa, ``Impact of e-e scattering
to the hot carrier degradation of deep submicron NMOSFETs,'' IEEE
Electron Device Letters, vol. 19, no. 12, pp. 463-465, 1998.
- 213
-
S. E. Rauch, III, G. La Rosa, and F. J. Guarin, ``Role of e-e scattering in
the enhancement of channel hot carrier degradation of deep sub-micron
NMOSFETs at high V
conditions,'' in Proceedings IEEE
International Reliability Physics Symposium (IRPS), pp. 399-405, 2001.
- 214
-
I. Starkov, S. Tyaginov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello,
J.-M. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher,
R. Minixhofer, H. Ceric, and T. Grasser, ``Analysis of worst-case hot-carrier
conditions for high voltage transistors based on full-band Monte-Carlo
simulations,'' in Proceedings IEEE International Symposium on the
Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1-6,
2010.
- 215
-
S. E. Rauch, III and G. La Rosa, ``The energy driven paradigm of NMOSFET
hot carrier effects,'' in Proceedings IEEE International Reliability
Physics Symposium (IRPS), pp. 708-709, 2005.
- 216
-
J. G. Kassakian and D. J. Perreault, ``The future of electronics in
automobiles,'' in Proceedings International Symposium on Power
Semiconductor Devices and IC's (ISPSD), pp. 15-19, 2001.
- 217
-
T. Maloney and N. Khurana, ``Transmission line pulsing techniques for circuit
modeling,'' in Electrical Overstress/Electrostatic Discharge Symposium
Proceedings, pp. 49-54, 1985.
- 218
-
Z. Yu, D. Chen, R. J. G. Goossens, R. W. Dutton, P. Vande Voorde, and S.-Y. Oh,
``Accurate modeling and numerical techniques in simulation of
impact-ionization effects on BJT characteristics,'' in Technical
Digest International Electron Devices Meeting (IEDM), pp. 901-904, 1991.
- 219
-
R. J. G. Goossens, S. Beebe, Z. Yu, and R. Dutton, ``An automatic biasing
scheme for tracing arbitrarily shaped I-V curves,'' IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 13, no. 3, pp. 310-317, 1994.
- 220
-
M. Bartels, S. Decker, B. Neinhus, and B. Meinerzhagen, ``A robust curve
tracing scheme for the simulation of bipolar breakdown characteristics with
nonlocal impact ionization models,'' in Proceedings European
Solid-State Device Research Conference (ESSDERC), vol. 1, pp. 492-495,
1999.
- 221
-
C. Salaméro, N. Nolhier, A. Gendron, M. Bafleur, P. Besse, and M. Zécri,
``TCAD methodology for ESD robustness prediction of smart power ESD
devices,'' IEEE Transactions on Device and Materials Reliability,
vol. 6, no. 3, pp. 399-407, 2006.
- 222
-
E. Takeda, N. Suzuki, and T. Hagiwara, ``Device performance degradation due to
hot-carrier injection at energies below the Si-SiO
energy barrier,''
in Technical Digest International Electron Devices Meeting (IEDM),
vol. 29, pp. 396-399, 1983.
- 223
-
A. Bravaix, C. Guerin, V. Huard, D. Roy, J. M. Roux, and E. Vincent,
``Hot-carrier acceleration factors for low power managemenet in DC-AC
stressed 40nm NMOS node at high temperature,'' in Proceedings IEEE
International Reliability Physics Symposium (IRPS), pp. 531-548, 2009.
- 224
-
W. Qin, W. Chim, D. Chan, and C. Lou, ``Modelling the degradation in the
subthreshold characteristics of submicrometre LDD PMOSFETs under
hot-carrier stressing,'' Semiconductor Science and Technology, vol. 13,
p. 453, 1998.
- 225
-
S. Ogura, P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard,
``Design and characteristics of the lightly doped drain-source (LDD)
insulated gate field-effect transistor,'' IEEE Transactions on
Electron Devices, vol. 27, no. 8, pp. 1359-1367, 1980.
- 226
-
T.-Y. Huang, ``Effects of channel shapes on MOSFET hot-electron resistance,''
Electronics Letters, vol. 21, no. 5, pp. 211-212, 1985.
- 227
-
F.-C. Hsu and H. R. Grinolds, ``Structure-enhanced MOSFET degradation due to
hot-electron injection,'' IEEE Electron Device Letters, vol. 5,
no. 3, pp. 71-74, 1984.
- 228
-
T. Mizuno, A. Toriumi, M. Iwase, M. Takahashi, H. Niiyama, M. Fukumoto, and
M. Yoshimi, ``Hot-carrier effects in 0.1
m gate length CMOS devices,''
in Technical Digest International Electron Devices Meeting (IEDM),
pp. 695-698, 1992.
- 229
-
E. Li, E. Rosenbaum, J. Tao, G. C.-F. Yeap, M.-R. Lin, and P. Fang, ``Hot
carrier effects in nMOSFETs in 0.1
m CMOS technology,'' in Proceedings IEEE International Reliability Physics Symposium (IRPS),
pp. 253-258, 1999.
- 230
-
K. Hess, L. F. Register, B. Tuttle, J. Lyding, and I. C. Kizilyalli, ``Impact
of nanostructure research on conventional solid-state electronics: The
giant isotope effect in hydrogen desorption and CMOS lifetime,'' Physica E, vol. 3, no. 1-3, pp. 1-7, 1998.
- 231
-
W. McMahon, K. Matsuda, J. Lee, K. Hess, and J. Lyding, ``The effects of a
multiple carrier model of interface trap generation on lifetime extraction
for MOSFETs,'' in Proceedings NSTI-Nanotech, vol. 1, pp. 576-579,
2002.
- 232
-
P. Avouris, R. E. Walkup, A. R. Rossi, T.-C. Shen, G. C. Abeln, J. R. Tucker,
and J. W. Lyding, ``STM-induced H atom desorption from Si(100): isotope
effects and site selectivity,'' Chemical Physics Letters, vol. 257,
no. 1-2, pp. 148-154, 1996.
- 233
-
J. W. Lyding, K. Hess, G. C. Abeln, D. S. Thompson, J. S. Moore, M. C. Hersam,
E. T. Foley, J. Lee, Z. Chen, S. T. Hwang, H. Choi, P. Avouris, and I. C.
Kizilyalli, ``Ultrahigh vacuumâscanning tunneling microscopy
nanofabrication and hydrogen/deuterium desorption from silicon surfaces:
implications for complementary metal oxide semiconductor technology,'' Applied Surface Science, vol. 130-132, pp. 221-230, 1998.
- 234
-
R. Biswas, Y.-P. Li, and B. C. Pan, ``Enhanced stability of deuterium in
silicon,'' Applied Physics Letters, vol. 72, no. 26, pp. 3500-3502,
1998.
- 235
-
K. Hess, L. Register, W. McMahon, B. Tuttle, O. Aktas, U. Ravaioli, J. Lyding,
and I. Kizilyalli, ``Theory of channel hot-carrier degradation in
MOSFETs,'' Physica B, vol. 272, no. 1-4, pp. 527-531, 1999.
- 236
-
K. Hess, A. Haggag, W. McMahon, B. Fischer, K. Cheng, J. Lee, and J. Lyding,
``Simulation of Si-SiO
defect generation in CMOS chips: from
atomistic structure to chip failure rates,'' in Technical Digest
International Electron Devices Meeting (IEDM), pp. 93-96, 2000.
- 237
-
E. Takeda and N. Suzuki, ``An empirical model for device degradation due to
hot-carrier injection,'' IEEE Electron Device Letters, vol. 4, no. 4,
pp. 111-113, 1983.
- 238
-
J.-S. Goo, Y.-G. Kim, H. L'Yee, H.-Y. Kwon, and H. Shin, ``An analytical model
for hot-carrier-induced degradation of deep-submicron n-channel LDD
MOSFETs,'' Solid-State Electronics, vol. 38, no. 6, pp. 1191-1169,
1995.
- 239
-
R. Dreesen, K. Croes, J. Manca, W. De Ceuninck, L. De Schepper, A. Pergoot, and
G. Groeseneken, ``Modelling hot-carrier degradation of LDD NMOSFETs by
using a high-resolution measurement technique,'' Microelectronics
Reliability, vol. 39, no. 6-7, pp. 785-790, 1999.
- 240
-
S. Tyaginov, I. Starkov, H. Enichlmair, J.-M. Park, C. Jungemann, and
T. Grasser, ``Physics-based hot-carrier degradation models,'' ECS
Transactions, vol. 35, no. 4, pp. 321-352, 2011.
- 241
-
W. McMahon, L. F. Register, and K. Hess, ``Effect of disorder-induced
variations among the bond energies of passivated silicon dangling bonds on
the time-dependence of nMOSFET degradation,'' in Annual March Meeting
American Physical Society, 2000.
- 242
-
A. Haggag, K. Hess, W. McMahon, and L. F. Register, ``Impact of scaling on
CMOS IC failure rate and design rules for reliability,'' in Proceedings International Workshop of Computational Electronics (IWCE),
pp. 49-50, 2000.
- 243
-
S. E. Rauch, III and G. La Rosa, ``CMOS hot carrier: From physics to end
of life projections, and qualification,'' in Proceedings IEEE
International Reliability Physics Symposium (IRPS), 2010.
- 244
-
C. Guerin, V. Huard, and A. Bravaix, ``The energy-driven hot carrier
degradation modes,'' in Proceedings IEEE International Reliability
Physics Symposium (IRPS), pp. 692-693, 2007.
- 245
-
S. Tyaginov, I. Starkov, O. Triebl, J. Cervenka, C. Jungemann, S. Carniello,
J.-M. Park, H. Enichlmair, M. Karner, C. Kernstock, E. Seebacher,
R. Minixhofer, H. Ceric, and T. Grasser, ``Interface traps density-of-states
as a vital component for hot-carrier degradation modeling,'' Microelectronics Reliability, vol. 50, no. 9-11, pp. 1267-1272, 2010.
- 246
-
P. Moens, M. Tack, R. Degraeve, and G. Groeseneken, ``A novel hot-hole
injection degradation model for lateral nDMOS transistors,'' in Technical Digest International Electron Devices Meeting (IEDM),
pp. 39.6.1-39.6.4, 2001.
- 247
-
P. Moens, J. Mertens, F. Bauwens, P. Joris, W. De Ceuninck, and M. Tack, ``A
comprehensive model for hot carrier degradation in LDMOS transistors,'' in
Proceedings IEEE International Reliability Physics Symposium
(IRPS), pp. 492-497, 2007.
- 248
-
I. Starkov, H. Enichlmair, S. Tyaginov, and T. Grasser, ``Analysis of the
threshold voltage turn-around effect in high-voltage n-MOSFETs due to
hot-carrier stress,'' in Proceedings IEEE International Reliability
Physics Symposium (IRPS), pp. XT.7.1-XT.7.6, 2012.
- 249
-
I. Starkov, H. Ceric, H. Enichlmair, J.-M. Park, S. Tyaginov, T. Grasser, and
C. Jungemann, ``Analysis of worst-case hot-carrier degradation conditions in
the case of n- and p-channel high-voltage MOSFETs,'' in Proceedings
Simulation of Semiconductor Processes and Devices (SISPAD), pp. 127-130,
2011.
- 250
-
M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser, ``Modeling of hot
carrier degradation using a spherical harmonics expansion of the bipolar
Boltzmann transport equation,'' in Technical Digest International
Electron Devices Meeting (IEDM), 2012.
(in print).
- 251
-
D. DiMaria and J. Stasiak, ``Trap creation in silicon dioxide produced by hot
electrons,'' Journal of Applied Physics, vol. 65, no. 6,
pp. 2342-2356, 1989.
- 252
-
P. Hehenberger, T. Aichinger, T. Grasser, W. Gös, O. Triebl, B. Kaczer, and
M. Nelhiebel, ``Do NBTI-induced interface states show fast recovery? A
study using a corrected on-the-fly charge-pumping measurement technique,'' in
Proceedings IEEE International Reliability Physics Symposium
(IRPS), pp. 1033-1038, 2009.
- 253
-
T. Grasser, H. Reisinger, P. Wagner, F. Schanovsky, W. Gös, and B. Kaczer,
``The time dependent defect spectroscopy (TDDS) for the characterization of
the bias temperature instability,'' in Proceedings IEEE International
Reliability Physics Symposium (IRPS), pp. 16-25, 2010.
- 254
-
T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger,
P. Wagner, F. Schanovsky, J. Franco, P. Roussel, and M. Nelhiebel, ``Recent
advances in understanding the bias temperature instability,'' in Technical Digest International Electron Devices Meeting (IEDM),
pp. 4.4.1-4.4.4, 2010.
- 255
-
P. Fleischmann, Mesh Generation for Technology CAD in Three Dimensions.
Dissertation, Technische Universität Wien, 1999.
http://www.iue.tuwien.ac.at/phd/fleischmann/.
- 256
-
A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations.
John Wiley and Sons Ltd, 1992.
- 257
-
L. P. Chew, ``Create a Voronoi diagram or Delaunay triangulation by
clicking points,'' 2007.
http://www.cs.cornell.edu/home/chew/Delaunay.html.
- 258
-
M. Spevak, R. Heinzl, P. Schwaha, and T. Grasser, ``Simulation of
microelectronic structures using a posteriori error estimation and mesh
optimization,'' in 5th Mathmod Vienna Proceedings, pp. 5.1-5.8, 2006.
- 259
-
R. Bank, D. Rose, and W. Fichtner, ``Numerical methods for semiconductor device
simulation,'' IEEE Transactions on Electron Devices, vol. 30, no. 9,
pp. 1031-1041, 1983.
- 260
-
Z. Stanojević, M. Karner, K. Schnass, C. Kernstock, O. Baumgartner, and
H. Kosina, ``A versatile finite volume simulator for the analysis of
electronic properties of nanostructures,'' in Proceedings Simulation of
Semiconductor Processes and Devices (SISPAD), pp. 143-146, 2011.
- 261
-
S. J. Polak, C. den Heijer, and W. Schilders, ``Semiconductor device modelling
from the numerical point of view,'' International Journal for Numerical
Methods in Engineering, vol. 24, pp. 763-838, 1987.
- 262
-
O. Triebl and T. Grasser, ``Investigation of vector discretization schemes for
box volume methods,'' in Proceedings NSTI-Nanotech, vol. 3, pp. 61-64,
2007.
- 263
-
S. Laux and B. Grossman, ``A general control-volume formulation for modeling
impact ionization in semiconductor transport,'' IEEE Transactions on
Electron Devices, vol. 32, no. 10, pp. 2076-2082, 1985.
- 264
-
J. Bürgler, R. Bank, W. Fichtner, and R. Smith, ``A new discretization scheme
for the semiconductor current continuity equations,'' IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 8, no. 5, pp. 479-489, 1989.
- 265
-
Synopsys, Inc., originally published by ISE, ISE TCAD Release 9.5 -
DESSIS, 2003.
- 266
-
H. Shao, Numerical Analysis of Meshing and Discretization for Anisotropic
Convection-Diffusion Equations with Applications.
Dissertation, Duke University, Aug. 1999.
- 267
-
M. Patil, ``New discretization scheme for two-dimensional semiconductor device
simulation on triangular grid,'' IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 11, pp. 1160-1165,
1998.
- 268
-
Y. He and G. Cao, ``A generalized Scharfetter-Gummel method to eliminate
crosswind effects,'' IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 10, no. 12, pp. 1579-1582, 1991.
- 269
-
W. Allegretto, A. Nathan, and H. Baltes, ``Numerical analysis of
magnetic-field-sensitive bipolar devices,'' IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 4,
pp. 501-511, 1991.
- 270
-
H. Kosina, O. Triebl, and T. Grasser, ``Box method for the convection-diffusion
equation based on exponential shape functions,'' in Proceedings
Simulation of Semiconductor Processes and Devices (SISPAD), vol. 12,
pp. 317-320, 2007.
- 271
-
O. Triebl and T. Grasser, ``Vector discretization schemes in technology CAD
environments,'' Romanian Journal of Information Science and Technology,
vol. 10, no. 2, pp. 167-176, 2007.
- 272
-
C. Fischer, Bauelementsimulation in einer computergestützten
Entwurfsumgebung.
Dissertation, Technische Universität Wien, May 1994.
http://www.iue.tuwien.ac.at/phd/fischer/.
- 273
-
O. Schenk, M. Hagemann, and S. Rollin, ``Recent advances in sparse linear
solver technology for semiconductor device simulation matrices,'' in Proceedings Simulation of Semiconductor Processes and Devices (SISPAD),
pp. 103-108, 2003.
- 274
-
P. Deuflhard, ``A modified Newton method for the solution of ill-conditioned
systems of nonlinear equations with application to multiple shooting,'' Numerische Mathematik, vol. 22, pp. 289-315, 1974.
- 275
-
V. Axelrad, ``Grid quality and its influence on accuracy and convergence in
device simulation,'' IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 17, no. 2, pp. 149-157, 1998.
- 276
-
N. Shigyo, H. Tanimoto, and T. Enda, ``Mesh related problems in device
simulation: Treatments of meshing noise and leakage current,'' Solid-State Electronics, vol. 44, pp. 11-16, 2000.
Next: Bibliography
Up: Dissertation Oliver Triebl
Previous: A. Derivation of the
O. Triebl: Reliability Issues in High-Voltage Semiconductor Devices