next up previous contents
Next: Eigene Publikationen Up: Dissertation Christian Troger Previous: B.4 Verwaltung physikalischer Einheiten

Literatur

1
R.D. Adams, E. Ganfield, and G. Sprouse,
``Numerical Integration of Schrödinger's Equation for a Square Well Potential Using an IBM 1620 Computer,''
Proc. Iowa Acad. Sci., vol. 71 pp. 392-398, 1964.

2
F. Ali and A. Gupta,
HEMTs & HBTs: Devices, Fabrication and Circuits,
Artech House, 1991.

3
G. Bastard,
Wave Mechanics Applied to Semiconductor Heterostructures,
Les Ulis, 1992.

4
T. Binder, K. Dragosits, T. Grasser, R. Klima, M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski, M. Rottinger, G. Schrom, S. Selberherr, and M. Stockinger,
MINIMOS-NT User's Guide,
Institut für Mikroelektronik, 1998.

5
P.C. Chow,
``Computer Solutions to the Schrödinger Equation,''
Am.J.Phys., vol. 40 pp. 730-734, May 1972.

6
M.L. Cohen and T.K. Bergstresser,
``Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-Blende Structures,''
Physical Review, vol. 141, no. 2, pp. 789-796, 1966.

7
J.T. Devreese and F.M. Peeters, editors,
The Physics of the Two-Dimensional Electron Gas,
vol. 157 of NATO ASI Series B,
Plenum Press, 1987.

8
H.J. Dirschmid,
Einführung in die mathematischen Methoden der theoretischen Physik,
Vieweg, 1976.

9
E. Anderson et al.,
LAPACK Users' Guide,
SIAM, 1999.

10
E. Fick,
Einführung in die Grundlagen der Quantentheorie,
Aula-Verlag, 1988.

11
M.V. Fischetti and S.E. Laux,
``Monte Carlo Study of Electron Transport in Silicon Inversion Layers,''
Physical Review B, vol. 48, no. 4, pp. 2244-2274, 1993.

12
F. Gamiz, J.A. López-Villanueva, J.A. Jiméndez-Tejada, I. Melchor, and A. Palma,
``A Comprehensive Model for Coulomb Scattering in Inversion Layers,''
J.Appl.Phys., vol. 75, no. 2, pp. 924-934, 1993.

13
M. Goano,
``Algorithm 745: Computation of the Complete and Incomplete Fermi-Dirac Integral,''
ACM Trans.Mathematical Software, vol. 21, no. 3, pp. 221-232, 1995.

14
W. Hänsch,
The Drift Diffusion Equation and its Application in MOSFET Modeling,
Springer, Wien, New York, 1991.

15
W. Hänsch, Th. Vogelsang, R. Kircher, and M. Orlowski,
``Carrier Transport Near the $ Si/SiO_2$ Interface of a MOSFET,''
Solid-State Electron., vol. 32, no. 10, pp. 839-849, 1989.

16
S.A. Hareland, S. Krishnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, A.F. Tasch, Jr., and C.M. Maziar,
``A Computationally Efficient Model for Inversion Layer Quantization Effects in Deep Submicron $ N$-Channel MOSFET's,''
IEEE Trans.Electron Devices, vol. 43, no. 1, pp. 90-96, 1996.

17
ISE Integrated Systems Engineering
ISE TCAD Manuals vol. 5, release 4,, 1997.

18
C. Jacoboni and L. Reggiani,
``The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,''
Rev.Mod.Phys., vol. 55, no. 3, pp. 645-705, 1983.

19
C. Jungemann, A. Emunds, and W.L. Engl,
``Simulation of Linear and Nonlinear Electron Transport in Homogeneous Silicon Inversion Layers,''
Solid-State Electron., vol. 36, no. 11, pp. 1529-1540, 1993.

20
E.O. Kane,
``Band Structure of Indium Antimonide,''
J.Phys.Chem.Solids, vol. 1 pp. 249-261, 1957.

21
G.E. Kimball and G.H. Shortley,
``The Numerical Solution of Schrödinger's Equation,''
Physical Review, vol. 45 pp. 815-820, 1934.

22
C. Kittel and C.Y. Fong,
Quantentheorie d. Festkörper,
Oldenbourg, 1989.

23
M. Knaipp,
Modellierung von Temperatureinflüssen in Halbleiterbauelementen,
Dissertation, Technische Universität Wien, 1998.
http://www.iue.tuwien.ac.at/phd/knaipp

24
H. Kosina,
Simulation des Ladungstransportes in elektronischen Bauelementen mit Hilfe der Monte-Carlo-Methode,
Dissertation, Technische Universität Wien, 1992.
http://www.iue.tuwien.ac.at/phd/kosina

25
J.A. López-Villanueva, F. Gámiz, I. Melchor, and J.A. Jiménez-Tejada,
``Modified Schrödinger Equation Including Nonparabolicity for the Study of a Two-Dimensional Electron Gas,''
Physical Review B, vol. 48, no. 3, pp. 1626-1631, 1993.

26
O. Madelung,
Festkörpertheorie I,
Springer, 1988.

27
A. Messiah,
Quantenmechanik 1,
DeGruyter, 1991.

28
C. Moglestue,
``Self-Consistent Calculation of Electron and Hole Inversion Charges at Silicon-Silicon Interfaces,''
J.Appl.Phys., vol. 59, no. 9, pp. 3175-3183, 1991.

29
H. Morkoc, H. Unlu, and G. Ji,
Principles and Technology of MODFETS,
vol. 1
Wiley, 1991.

30
J.K. Ousterhout,
Tcl and the Tk Toolkit,
Addison Wesley, 1994.

31
R. Paul,
MOS-Feldeffekttransistoren,
Springer, Berlin, 1994.

32
A. Pirovano,
``Explaining the Dependences of the Hole and Electron Mobilities in Si Inversion Layers,''
IEEE Trans.Electron Devices, vol. 47, no. 4, pp. 718-724, 2000.

33
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C,
Cambridge University Press, 1992.

34
L. Reggiani, editor,
Hot-Electron Transport in Semiconductors,
vol. 58 of Topics in Applied Physics,
Springer, 1985.

35
S. Rodríguez, J.A. López-Villanueva, I. Melchor, and J.E. Carceller,
``Hole Confinement and Energy Subbands in a Silicon Inversion Layer Using the Effective Mass Theory,''
J.Appl.Phys., vol. 86, no. 1, pp. 438-444, 1999.

36
I. Ruge,
Halbleiter-Technologie,
vol. 4 of Halbleiter-Elektronik,
Springer, 1984
2. überarb. Aufl.

37
G.L. Schaps,
``Compiler Construction with ANTLR and Java,''
Dr. Dobb's Journal, 1999.
http://www.ddj.com/articles/1999/9903/9903h/9903h.htm , http://www.antlr.org

38
Schwabl,
Quantenmechanik,
Springer, 1988.

39
K. Seeger,
Semiconductor Physics,
Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.

40
S. Selberherr,
Analysis and Simulation of Semiconductor Devices,
Springer, Wien, New York, 1984.

41
Semiconductor Industrial Association, San Jose, CA,
The National International Technology Roadmap for Semiconductors,
1999.

42
F. Stern,
``Iteration Methods for Calculation of Self-Consistent Fields and Mobility in Semiconductor Inversion Layers,''
J. Comp. Physics, vol. 6 pp. 56-67, 1970.

43
F. Stern,
``Self-Consistent Results for n-Type Si Inversion Layers,''
Physical Review B, vol. 5, no. 12, pp. 4891-4899, 1972.

44
Technology Modeling Associates, Inc., Sunnyvale, California
TMA Medici, Two-Dimensional Device Simulation Program, Version 4.0 User's Manual,, October 1997.

45
K. Tomizawa,
Numerical Simulation of Submicron Semiconductor Devices,
Artech House, 1993.

46
A. Trellakis, A.T. Galick, A. Pacelli, and U. Ravaioli,
``Iteration Scheme for the Solution of the Two-Dimensional Schroedinger-Poisson Equation in Quantum Structures,''
J.Appl.Phys., vol. 81, no. 12, pp. 7880-7884, 1997.

47
Y.P. Tsividis,
Operation and Modeling of the MOS Transistor,
McGraw-Hill, New York, 1987.

48
B. Welch,
Practical Programming in Tcl and Tk,
Prentice-Hall, 1995.

49
P.Y. Yu and M. Cardona,
Fundamentals of Semiconductors - Physics and Materials Properties,
Springer, Berlin, 1996.

50
J.M. Ziman,
Theory of Solids,
Cambridge University Press, 1972.


next up previous contents
Next: Eigene Publikationen Up: Dissertation Christian Troger Previous: B.4 Verwaltung physikalischer Einheiten

C. Troger: Modellierung von Quantisierungseffekten in Feldeffekttransistoren