next up previous contents
Next: Own Publications Up: Dissertation Martin-Thomas Vasicek Previous: 6. Summary and Conclusion

Bibliography

1
M. Lundstrom, Fundamentals of Carrier Transport.
Cambridge University Press, 2000.

2
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Gös, M. Vasicek, O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina, and S. Selberherr, ``A Multi-Purpose Schrödinger-Poisson Solver for TCAD applications,'' J.Comput.Electronics, vol. 6, pp. 179-182, 2007.

3
M. Wagner, M. Karner, and T. Grasser, ``Quantum Correction Models for Modern Semiconductor Devices,'' in Proceedings of the XIII International Workshop on Semiconductor Devices, 2005.

4
T. Grasser, T. Tang, H. Kosina, and S. Selberherr, ``A Review of Hydrodynamic and Energy-Transport Models for Semiconductor Device Simulation,'' Proceedings of the IEEE, vol. 91, pp. 251-274, 2003.

5
T. Grasser, H. Kosina, and S. Selberherr, ``Hot Carrier Effects within Macroscopic Transport Models,'' Int. J. of High Speed Electronics and Systems, vol. 13, pp. 973-901, 2003.

6
T. Grasser, H. Kosina, and S. Selberherr, ``Investigation of Spurious Velocity Overshoot using Monte Carlo Data,'' Appl.Phys.Lett., vol. 79, pp. 1900-1902, 2001.

7
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, ``On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I - Effects of Substrate Impurity Concentration,'' IEEE Trans.Electron Devices, vol. 41, pp. 2357-2362, 1994.

8
M. Levinshtein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials.
John Wiley & Sons, Inc., 2001.

9
S. Sze and K. Ng, Physics of Semiconductor Devices.
Wiley, 2007.

10
G. Moore, ``Cramming more Components onto Integrated Circuits,'' Electronics, vol. 38, 1965.

11
G. Moore, ``Lithography and the Future of Moore's Law,'' in Proc. SPIE, 1995.

12
S. I. Association, ``International Technology Roadmap for Semiconductors - 2007 Update, 2007,'' tech. rep., http://www.itrs.net, 2007.

13
G. Shahidi, ``SOI Technology for the GHz Era,'' IBM J.Res.Dev., vol. 46, pp. 121-131, 2002.

14
D. Scharfetter and H. Gummel, ``Large-Signal Analysis of a Silicon Read Diode Oscillator,'' IEEE Trans.Electron Devices, vol. 16, pp. 64-77, 1969.

15
T. Tang, ``Extension of the Scharfetter-Gummel Algorithm to the Energy Balance Equation,'' IEEE Trans.Electron Devices, vol. ED-31, pp. 1912-1914, 1984.

16
R. Stratton, ``Diffusion of Hot and Cold Electrons in Semiconductor Barriers,'' Physical Review, vol. 126, no. 6, pp. 2002-2014, 1962.

17
T. Bordelon, V. Agostinelli, X. Wang, C. Maziar, and A. Tasch, ``Relaxation Time Approximation and Mixing of Hot and Cold Electron Populations,'' Electronics Letters, vol. 28, pp. 1173-1175, 4 June 1992.

18
B. J. Geurts, M. Nekovee, H. M. J. Boots, and M. F. H. Schuurmans, ``Exact and Moment Equation Modeling of Electron Transport in Submicron Structures,'' Appl.Phys.Lett., vol. 59, pp. 1743-1745, Sep 1991.

19
A. Abramo and C. Fiegna, ``Electron Energy Distributions in Silicon Structures at low Applied Voltages and High Electric Fields,'' J.Appl.Phys., vol. 80, pp. 889-893, 1996.

20
T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, ``Using Six Moments of Boltzmann's Transport Equation for Device Simulation,'' J.Appl.Phys., vol. 90, pp. 2389-2396, 2001.

21
T. Grasser, R. Kosik, C. Jungemann, H. Kosina, and S. Selberherr, ``Nonparabolic Macroscopic Transport Models for Device Simulation based on Bulk Monte Carlo Data,'' J.Appl.Phys., vol. 97, no. 12, 2005.

22
C. Jacoboni and L. Reggiano, ``The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,'' Review of Modern Physics, vol. 55, pp. 645-705, 1983.

23
E. Ungersböck and H. Kosina, ``Monte Carlo Study of Electron Transport in Strained Silicon,'' J.Comput.Electronics, vol. 5, pp. 79-83, 2006.

24
M. Nedjalkov, H. Kosina, and S. Selberherr, ``Monte Carlo Algorithms for Stationary Device Simulations,'' Math. Comp. in Simulation, vol. 62, pp. 453-461, 2003.

25
G. Meller, L. Li, and H. Kosina, ``Monte Carlo Simulation of Molecularly Doped Organic Semiconductors,'' in 3rd European Conference on Organic Electronics and Related Phenomena Book of Abstracts, 2005.

26
D. Venture, A. Gnudi, and G. Baccarani, ``Multidimensional Spherical Harmonics Expansion of Boltzmann Equation for Transport in Semiconductors,'' Appl.Math.Lett., vol. 5, pp. 85-90, 1992.

27
V. Sverdlov, A. Gehring, H. Kosina, and S. Selberherr, ``Quantum Transport in Ultra-Scaled Double-Gate MOSFETs: A Wigner Function-Based Monte Carlo Approach,'' Solid-State Electron., vol. 49, pp. 1510-1515, 2005.

28
J. Wang and M. Lundstrom, ``Does Source-to-Drain Tunneling Limit the Ultimate Scaling of MOSFETs?,'' in IEDM, 2002.

29
M. Lundstrom and Z. Ren, ``Essential Physics of Carrier Transport in Nanoscale MOSFETs,'' IEEE Trans.Electron Devices, vol. 49, pp. 133-141, Jan. 2002.

30
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, ``Generalized Many-Channel Conductance Formula with Application to Small Rings,'' Physical Review B, vol. 31, pp. 6207-6215, 1985.

31
S. Datta, Quantum Transport Atom to Transistor.
Cambridge University Press, 2005.

32
H. Kosina, V. Sverdlov, and T. Grasser, ``Wigner Monte Carlo Simulation: Particle Annihilation and Device Applications,'' in Proc. International Conference on Simulation of Semiconductor Processes and Devices, pp. 357-360, 6-8 Sept. 2006.

33
M. Nedjalkov, H. Kosina, and D. Vasileska, Wigner Ensemble Monte Carlo: Challenges of 2D Nano-Device Simulation.
Springer-Verlag Berlin Heidelberg, 2008.

34
M. Fischetti, ``Theory of Electron Transport in Small Semiconductor Devices using the Pauli Master Equation,'' J.Appl.Phys., vol. 83, pp. 270-291, 1998.

35
M. Fischetti, ``Master-Equation Approach to the Study of Electronic Transport in Small Semiconductor Devices,'' Physical Review B, vol. 59, pp. 4901-4917, 1999.

36
G. Lindblad, ``On the Generators of Quantum Dynamical Semigroups,'' Communications in Math. Phys., vol. 48, pp. 119-130, 1976.

37
S. Gao, ``Lindblad Approach to Quantum Dynamics of Open Systems,'' Physical Review B, vol. 57, pp. 4509-4517, 1998.

38
H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, and A. Messina, ``Solution of the Lindblad Equation in the Kraus Representation,'' Physical Review A, vol. 74, pp. 0621131-0621138, 2006.

39
A. Jüngel, Mathematical Modeling of Semiconductor Devices.

40
A. Prechtl, Vorlesungen über Theoretische Elektrotechnik, Zweiter Teil: Elektrodynamik.
Institut für Grundlagen und Theorie der Elektrotechnik, TU Wien, 1998.

41
S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Springer Verlag Wien New york, 1984.

42
T. Grasser and M. Karner, Modellierung elektronischer Bauelemente.
Institute for Microelectronics, TU Vienna, 2006.
Lecture Notes.

43
E. Schrödinger, ``Quantisierung als Eigenwertproblem,'' Ann.Phys., vol. 79, no. 3, pp. 361-376, 1926.

44
M. Karner, ``Multi-Dimensional Simulation of Closed Quantum Systems,'' Master's thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2004.

45
F. Schwabl, Quantenmechanik für Fortgeschrittene.
Springer-Verlag Berlin Heidelberg, 2004.

46
Y. Tsividis, Operation and Modeling of the MOS Transistor.
McGraw-Hill Series in Electrical Engineering, 1987.

47
T. Ando, A. Fowler, and F. Stern, ``Electronic Properties of Two-Dimensional Systems,'' Review of Modern Physics, vol. 1982, pp. 437-672, 1982.

48
D. Grau, Übungsaufgaben zur Quantentheorie.
Carl Hanser Verlag München Wien, 1993.

49
A. Trellakis, A. Galick, A. Pacelli, and U. Ravaioli, ``Iteration Scheme for the Solution of the Two-Dimensional Schrödinger-Poisson Equations in Quantum Structures,'' J.Appl.Phys., vol. 81, pp. 7881-7884, 1997.

50
M. Vasicek, M. Karner, E. Ungersböck, M. Wagner, H. Kosina, and T. Grasser, ``Modeling of Macroscopic Transport Parameters in Inversion Layers,'' in Simulation of Semiconductor Processes and Devices, 2007.

51
T. Grasser, ``Non-Parabolic Macroscopic Transport Models for Semiconductor Device Simulation,'' Physica A, vol. 349, pp. 221-258, 2005.

52
P. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations.
Springer-Verlag Wien New York, 1990.

53
A. Jüngel, Transport Equations for Semiconductors.
Institut für Mathematik Johannes Gutenberg-Universität Mainz, 2004.

54
W. Nolting, Grundkurs Theoretische Physik 6: Statistische Physik.
Springer Berlin - Heidelberg, 2002.

55
A. Vlasov, ``On Vibration Properties of Electron Gas,'' J. Exp. Theor. Phys., vol. 8, pp. 444-470, 1938.

56
W. Ludwig, Festkörperphysik.
Akademische Verlagsgesellschaft Wiesbaden, 1978.

57
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation.
Springer Wien - New York, 1989.

58
P. Palestri, M. Mastrapasqua, A. Pacelli, and C. King, ``A Drift-Diffusion/Monte Carlo Simulation Methodology for Si$ _{1-x}$ Ge$ _x$ HBT Design,'' IEEE Trans.Electron Devices, vol. 49, pp. 1242-1249, July 2002.

59
C. Huang, T. Wang, C. Chen, M. Chang, and J. Fu, ``Modeling Hot-Electron Gate Current in Si MOSFET's using a coupled Drift-Diffusion and Monte Carlo Method,'' IEEE Trans.Electron Devices, vol. 39, pp. 2562-2568, Nov 1992.

60
S. Bandyopadhyay, M. Klausmeier-Brown, C. Maziar, S. Datta, and M. Lundstrom, ``A Rigorous Technique to Couple Monte Carlo and Drift-Diffusion Models for Computationally Efficient Device Simulation,'' IEEE Trans.Electron Devices, vol. 34, pp. 392-399, Feb 1987.

61
Ashcroft and Mermin, Solid State Physics.
Harcourt College Publishers, 1976.

62
H. S$ \o$ rensen, P. Hansen, D. Petersen, S. Skelboe, and K. Stokbro, ``Efficient Wave-Function Matching Approach for Quantum Transport Calculations,'' Physical Review B, vol. 79, pp. 205322-1-205322-10, 2009.

63
G. Bir and G. Pikus, Symmetry and Strain-Induced Effects in Semiconductors.
J.Wiley & Sons New York, 1974.

64
C. Kittel, Quantentheorie der Festkörper.
Oldenburg, 1989.

65
M. Fischetti, ``Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blend Structures-Part 1: Homogeneous Transport,'' IEEE Trans.Electron Devices, vol. 38, pp. 634-649, 1991.

66
M. Fischetti and S. Laux, ``Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures. II. Submicrometer MOSFET's,'' IEEE Trans.Electron Devices, vol. 38, pp. 650-660, March 1991.

67
W. Nolting, Grundkurs Theoretische Physik 7: Viel-Teilchen-Theorie.
Springer, 2001.

68
F. Jensen, Introduction to Computational Chemistry.
Wiley, 2006.

69
R. Martin, Electronic Structure: Basic Theory and Practical Methods.
Cambridge Unversity Press, 2004.

70
E. Kane, ``Band Structure of Indium Antimonide,'' J.Phys.Chem.Solids, vol. 1, pp. 249-261, 1957.

71
S. Laux and M. Fischetti, ``Monte-Carlo Simulation of Submicrometer Si n-MOSFET's at 77 and 300 K,'' IEEE Electron Device Lett., vol. 9, pp. 467-469, 1988.

72
B. Vinter, ``Subband Energies in N-Channel Inversion Channel on (111) Ge,'' Physical Review B, vol. 20, pp. 2395-2397, 1979.

73
S. Dhar, Analytical Mobility Models for Strained Silicon-Based Devices.
PhD thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2007.

74
M. Pourfath, Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors.
PhD thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2007.

75
A. Gehring, Simulation of Tunneling in Semiconductor Devices.
PhD thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2003.

76
S. Datta, ``The Non-Equilibrium Green's Function (NEGF) Formalism: An Elementary Introduction,'' in Proc. Digest. International Electron Devices Meeting IEDM '02, pp. 703-706, 8-11 Dec. 2002.

77
R. Lake and S. Datta, ``Non-Equilibrium Green's Function Method Applied to Double-Barrier Resonant-Tunneling Diodes,'' Physical Review B, vol. 45, pp. 6670-6686, 1992.

78
S. Datta, ``Nanoscale Device Modeling: The Green's Function Method,'' Superlattices & Microstructures, vol. 28, pp. 253-278, 2000.

79
M. Anantram, M. Lundstrom, and D. Nikonov, ``Modeling of Nanoscale Devices,'' cond-mat/0610247, 2006.

80
H. Kosina, M. Nedjalkov, and S. Selberherr, ``A Monte Carlo Method Seamlessly Linking Quantum and Classical Transport Calculations,'' J.Comput.Electronics, vol. 2, pp. 147-151, 2003.

81
V. Sverdlov, T. Grasser, and H. Kosina, ``Scattering and Space-Charge Effects in Wigner Monte Carlo Simulations of Single and Double Barrier Devices,'' J.Comput.Electronics, vol. 5, pp. 447-450, 2006.

82
M. Nedjalkov, E. Atanassov, H. Kosina, and S. Selberherr, ``Operator-Split Method for Variance Reduction in Stochastic Solutions of the Wigner Equation,'' Monte Carlo Methods and Appl., vol. 10, pp. 461-468, 2004.

83
H. Kosina, M. Nedjalkov, and S. Selberherr, ``Solution of the Space-dependent Wigner Equation using a Particle Model,'' Monte Carlo Methods and Appl., vol. 10, pp. 359-368, 2004.

84
H. Kosina, ``Wigner Function Approach to Nano Device Simulation,'' Int. J. Computational Science and Engineering, vol. 2, pp. 100-118, 2006.

85
E. Wigner, ``On the Quantum Correction for Thermodynamic Equilibrium,'' Physical Review, vol. 40, pp. 749-759, 1932.

86
M. Nedjalkov, H. Kosina, and S. Selberherr, Large-Scale Scientific Computing, ch. A Weight Decomposition Approach to the Sign Problem in Wigner Transport Simulations, pp. 178-184.
Springer Berlin/Heidelberg, 2004.

87
L. Shifren, C. Ringhofer, and D. Ferry, ``A Wigner Function-Based Quantum Ensemble Monte Carlo Study of a Resonant Tunneling Diode,'' IEEE Trans.Electron Devices, vol. 50, pp. 769-773, March 2003.

88
S. Bertoluzza and P. Pietra, ``Space-Frequency Adaptive Approximation for Quantum Hydrodynamic Models,'' J. Trans. Theory and Stat. Phys, vol. 29, pp. 375-395, 2000.

89
G. Paasch and H. Übensee, ``A Modified Local Density Approximation Electron Density in Inversion Layers,'' Phys.stat.sol.(b), vol. 113, pp. 165-178, 1982.

90
W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, ``Carrier Transport near the Si/SiO2 Interface of a MOSFET,'' Solid-State Electron., vol. 32, pp. 839-849, 1989.

91
M. Wagner, M. Karner, J. Cervenka, M. Vasicek, H. Kosina, S. Holzer, and T. T. Grasser, ``Quantum Correction for DG MOSFETs,'' J.Comput.Electronics, vol. 5, pp. 397-400, 2006.

92
C. Jungemann, C. Nguyen, B. Neinhüs, S. Decker, and B. Meinerzhagen, ``Improved Modified Local Density Approximation for Modeling of Size Quantization in NMOSFETs,'' in Proc. Intl. Conf. Modeling and Simulation of Microsystems 2001, 2001.

93
C. Nguyen, C. Jungemann, and B. Meinerzhagen, ``Modeling of Size Quantization in Strained Si-nMOSFETs with the Improved Modified Local Density Approximation,'' in NSTI-Nanotech, 2005.

94
M. Karner, M. Wagner, T. Grasser, and H. Kosina, ``A Physically Based Quantum Correction Model for DG MOSFETs,'' in Materials Research Society Spring Meeting (MRS), 2006.

95
M. V. Dort, P. Woerlee, and A. Walker, ``A Simple Model for Quantisation Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions,'' Solid-State Electron., vol. 37, pp. 411-414, 1994.

96
F. Bufler, Y. Asahi, H. Yoshimura, C. Zechner, A. Schenk, and W. Fichtner, ``Monte Carlo Simulation and Measurement of Nanoscale n-MOSFETs,'' IEEE Trans.Electron Devices, vol. 50, pp. 418-424, Feb. 2003.

97
C. Jungemann, ``Advances in Spherical Harmonics Solvers for the Boltzmann Equation,'' in Proc. 9th International Conference on Solid-State and Integrated-Circuit Technology ICSICT 2008, pp. 357-360, 20-23 Oct. 2008.

98
C. Levermore, ``Moment Closure Hierachies for Kinetic Theories,'' J.Stat.Phys., vol. 83, pp. 1021-1065, 1996.

99
A. Anile and O. Muscato, ``Improved Hydrodynamic Model for Carrier Transport in Semiconductor,'' Physical Review B, vol. 51, pp. 728-740, 1995.

100
A. Anile and S. Pennisi, ``Extended Thermodynamics of the Blotekjaer Hydrodynamical Model for Semiconductors,'' Continuum Mech. Thermodyn., vol. 4, pp. 187-197, 1992.

101
O. Muscato and V. Romano, ``Simulation of Submicron Silicon Diodes with a Non-Parabolic Hydrodynamical Model based on the Maximum Entropy Principle,'' in Book of Abstracts Computational Electronics IWCE Glasgow 2000. 7th International Workshop on, pp. 94-95, 22-25 May 2000.

102
B. Neinhüs, Hierarchische Bauelementsimulationen von Si/SiGe Hochfrequenztransistoren.
PhD thesis, Universität Bremen, 2002.

103
S. C. Brugger, Moments of the Inverse Scattering Operator.
Series in Microelectronics, 2006.

104
K. Blotekjaer, ``Transport Equations for Electrons in Two-Valley Semiconductors,'' IEEE Trans.Electron Devices, vol. ED-17, pp. 38-47, Jan. 1970.

105
M. Gritsch, H. Kosina, T. Grasser, and S. Selberherr, ``Revision of the Standard Hydrodynamic Transport Model for SOI Simulation,'' IEEE Trans.Electron Devices, vol. 49, pp. 1814-1820, Oct. 2002.

106
M. Gritsch, Numerical Modeling of Silicon on Insulator MOSFETs.
PhD thesis, Technische Unviersität Wien Fakultät für Elektrotechnik, 2002.

107
M. Wagner, Simulation of Thermoelectric Devices.
PhD thesis, Technischen Universität Wien Fakultät für Elektrotechnik, 2007.

108
R. Kosik, T. Grasser, R. Entner, and K. Dragosits, ``On the Highest Order Moment Closure Problem,'' in Proceedings IEEE International Spring Seminar on Electronics Technology 27th ISSE 2004, pp. 118-120, IEEE, 2004.

109
T. Grasser, R. Kosik, C. Jungemann, B. Meinerzhagen, H. Kosina, and S. Selberherr, ``A Non-Parabolic Six Moments Model for the Simulation of Sub-100 nm Semiconductor Devices,'' J.Comput.Electronics, vol. 3, pp. 183-187, 2004.

110
D. Caughey and R. Thomas, ``Carrier Mobilities in Silicon Empirically Related to Doping and Field,'' Proc.IEEE, vol. 55, pp. 2192-2193, Dec. 1967.

111
S. Selberherr, W. Hänsch, M. Seavey, and J. Slotboom, ``The Evolution of the MINIMOS Mobility Model,'' Archiv für Elektronik und Übertragungstechnik, vol. 44, pp. 161-171, 1990.

112
C. Jungemann and B. Meinerzhagen, Hierachical Device Simulation The Monte Carlo Perspective.
Springer Wien New York, 2003.

113
H. Wang, R.Jaszczak, and R. Coleman, ``Monte Carlo Modeling of Penetration Effect for Iodine-131 Pinhole Imaging,'' IEEE J. Nuclear Science, vol. 43, pp. 3272-3277, Dec. 1996.

114
G. Fishman, Monte Carlo Concepts, Algorithms, and Applications.
Springer Series in Operations Research, 1996.

115
M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics.
Oxford University Press, 2002.

116
T. Yu and K. Brennan, ``Monte Carlo Calculation of Two-Dimensional Electron Dynamics in GaN&lGaN Heterostructures,'' J.Appl.Phys., vol. 91, pp. 3730-3736, Mar 2002.

117
H. Kosina, M. Nedjalkov, and S. Selberherr, ``The Stationary Monte Carlo Method for Device Simulation. I. Theory,'' Journal of Applied Physics, vol. 93, pp. 3553-3563, Mar 2003.

118
R. Frühwirth and M. Regler, Monte-Carlo Methoden, Eine Einführung.
B. I. Wissenschaftsverlag Mannheim, Wien, Zürich, 1983.

119
H. Kosina, Simulation des Ladungstransportes in elektronischen Bauelementen mit Hilfe der Monte-Carlo-Methode.
PhD thesis, Technischen Universität Wien Fakultät für Elektrotechnik, 1992.

120
F. Bufler, Full-Band Monte Carlo Simulation of Nanoscale Strained-Silicon MOSFETs.
Series in Microelectronics, 2003.

121
C. Jacoboni, ``A new Approach to Monte Carlo Simulation,'' in Proc. International Electron Devices Meeting Technical Digest, pp. 469-472, 3-6 Dec. 1989.

122
C. Troger, Modellierung von Quantisierungseffekten in Feldeffekttransistoren.
PhD thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2001.

123
L. Wang, ``Monte-Carlo-Simulation des Elektronentransports in Technologisch Signifikanten Halbleitern,'' Master's thesis, Technische Universität Wien Fakultät für Elektrotechnik, 1995.

124
T. Tang and H. Gan, ``Two Formulations of Semiconductor Transport Equations based on Spherical Harmonic Expansion of the Boltzmann Transport Equation,'' IEEE Trans.Electron Devices, vol. 47, pp. 1726-1732, Sept. 2000.

125
C. Lang and N. Pucker, Mathematische Methoden in der Physik.
Spektrum Akademischer Verlag, 1998.

126
M. Abramowitz and A. Stegun, Handbook of Mathematical Functions.
United States Department of Commerce, 1972.

127
C. Jungemann, A. Pham, and B. Meinerzhagen, ``Stable Discretization of the Boltzmann Equation based on Spherical Harmonics, Box Integration, and a Maximum Entropy Dissipation Principle,'' J.Appl.Phys., vol. 100, p. 13, 2006.

128
K. Rahmat, ``Simulation of Hot Carriers in Semiconductor Devices,'' tech. rep., The Research Laboratory of Electronics Massachusetts Institute of Technology, 1995.

129
D. Ventura, A. Gnudi, and G. Baccarani, ``A Deterministic Approach to the Solution of the BTE in Semiconductors,'' Revista Del Nuovo Cimento, vol. 18, pp. 1-33, 1996.

130
S. Laux and M. Fischetti, ``Transport Models for Advanced Device Simulation-Truth or Consequences?,'' in Proc. Bipolar/BiCMOS Circuits and Technology Meeting the 1995, pp. 27-34, 2-3 Oct. 1995.

131
M. Vasicek, J. Cervenka, M. Wagner, M. Karner, and T. Grasser, ``A 2D Non-Parabolic Six-Moments Model,'' Solid-State Electron., vol. 52, pp. 1606-1609, 2008.

132
Institut für Mikroelektronik, Technische Universität Wien, Minimos-NT 2.0 User's Guide, I$ \mu$ E, 2002.

133
F. Agostino and D. Quercia, ``Short-Channel Effects in MOSFETs,'' tech. rep., Introduction to VLSI design (EECS 467), 2000.

134
F. Assaderaghi, P. Ko, and C. Hu, ``Observation of Velocity Overshoot in Silicon Inversion Layers,'' IEEE Electron Device Lett., vol. 14, pp. 484-486, Oct. 1993.

135
F. Assaderaghi, D. Sinitsky, H. Gaw, J. Bokor, P. Ko, and C. Hu, ``Saturation Velocity and Velocity Overshoot of Inversion Layer Electrons and Holes,'' in Proc. International Electron Devices Meeting Technical Digest, pp. 479-482, 11-14 Dec. 1994.

136
A. Das and M. Lundstrom, ``Does Velocity Overshoot reduce Collector Delay Time in AlGaAs/GaAs HBTs?,'' IEEE Electron Device Lett., vol. 12, pp. 335-337, June 1991.

137
S. Laux and M. Fischetti, ``Monte Carlo Study of Velocity Overshoot in Switching a 0.1-Micron CMOS Inverter,'' in Proc. International Electron Devices Meeting Technical Digest, pp. 877-880, 7-10 Dec. 1997.

138
T. Mizuno and R. Ohba, ``Experimental study of carrier velocity overshoot in sub-0.1 & devices-physical limitation of MOS structures,'' in Proc. International Electron Devices Meeting, pp. 109-112, 8-11 Dec. 1996.

139
R. Quay, Analysis and Simulation of High Electron Mobility Transistors.
PhD thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2001.

140
A.Schenk, Halbleiterbauelemente-Physikalische Grundlagen und Simulation.
ETH Zurich, Integrated Systems Laboratory, 2001.

141
T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr, ``Characterization of the Hot Electron Distribution Function using Six Moments,'' J.Appl.Phys., vol. 91, pp. 3869-3879, 2001.

142
L. Keldysh, ``Concerning the Theory of Impact Ionization in Semiconductors,'' Soviet Phys.JETP, vol. 21, pp. 1135-1144, 1965.

143
D. Chen, E. Kan, U. Ravaioli, C. Shu, and R. Dutton, ``An Improved Energy Transport Model including Nonparabolicity and Non-Maxwellian Distribution Effects,'' IEEE Electron Device Lett., vol. 13, no. 1, pp. 26-28, 1992.

144
D. Chen, E. Sangiorgi, M. Pinto, E. Kn, U. Ravaioli, and R. Dutton, ``Analysis of Spurious Velocity Overshoot in Hydrodynamic Simulations,'' in Proc. NUPAD IV Numerical Modeling of Processes and Devices for Integrated Circuits Workshop on, pp. 109-114, 1992.

145
T. Tang, S. Ramaswamy, and J. Nam, ``An Improved Hydrodynamic Transport Model for Silicon,'' IEEE Trans.Electron Devices, vol. 40, no. 8, pp. 1469-1477, 1993.

146
D. Esseni and A. Abramo, ``Modeling of Electron Mobility Degradation by Remote Coulomb Scattering in Ultrathin Oxide MOSFETs,'' IEEE Trans.Electron Devices, vol. 50, pp. 1665-1674, July 2003.

147
D. Esseni, ``On the Modeling of Surface Roughness Limited Mobility in SOI MOSFETs and Its Correlation to the Transistor Effective Field,'' IEEE Trans.Electron Devices, vol. 51, pp. 394-401, March 2004.

148
L. Lucci, P. Palestri, D.Esseni, and L.Selmi, ``Multi-Subband Monte Carlo Modeling of Nano-MOSFETs with Strong Vertical Quantization and Electron Gas Degeneration,'' in IEEE International Electron Devices Meeting, 2005.

149
B. Neinhüs, C. Nguyen, C. Jungemann, and B. M. u, ``A CPU Efficient Electron Mobility Model for MOSFET Simulation with Quantum Corrected Charge Densities,'' in Solid-State Device Research Conference, 2000. Proceeding of the 30th European, 2000.

150
M. Fischetti and S. Laux, ``Monte Carlo Study of Electron Transport in Silicon Inversion Layers,'' in Proc. International Electron Devices Meeting Technical Digest, pp. 721-724, 13-16 Dec. 1992.

151
M. Fischetti and S. Laux, ``Monte Carlo Study of Sub-Band-Gap Impact Ionization in Small Silicon Field-Effect Transistors,'' in Proc. International Electron Devices Meeting, pp. 305-308, 10-13 Dec. 1995.

152
M. Fischetti, S. Laux, and A. Kumar, ``Simulation of Quantum Transport in Small Semiconductor Devices,'' in Proc. International Conference on Simulation of Semiconductor Processes and Devices SISPAD 2005, pp. 19-22, 01-03 Sept. 2005.

153
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, H. Kosina, T. Grasser, and S. Selberherr, ``VSP - A Multi-Purpose Schrödinger-Poisson Solver for TCAD Applications,'' in 11th Workshop on Computational Electronics, 2006.

154
Institut für Mikroelektronik, Technische Universität Wien, VMC 2.0 Users Guide, 2006.

155
S. Jin, M. Fischetti, and T. Wang, ``Modeling of Surface-Roughness Scattering in Ultrathin-Body SOI MOSFETs,'' IEEE Trans.Electron Devices, vol. 54, pp. 2191-2203, 2007.

156
S. Goodnick, D. Ferry, C. Wilmsen, Z. Liliental, D. Fathy, and O. Krivanek, ``Surface Roughness at the Si(100)-SiO2 Interface,'' Physical Review B, vol. 32, pp. 8171-8186, 1985.

157
D. Ferry and S. Goodnick, Transport in Nanostructures.
Cambridge University Press, 1997.

158
R. Prange and T. Nee, ``Quantum Spectroscopy of the Low-Field Oscillations in the Surface Impedance,'' Physical Review, vol. 168, pp. 779-786, 1968.

159
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, ``On the Universality of Inversion Layer Mobility in Si MOSFET's: Part 11-Effects of Surface Orientation,'' IEEE Trans.Electron Devices, vol. 41, pp. 2363-2368, 1994.

160
A. Khakifirooz and D. Antoniadis, ``On the Electron Mobility in Ultrathin SOI and GOI,'' IEEE Trans.Electron Devices Letters, vol. 25, pp. 80-82, 2004.

161
F. Gamiz and M. V. Fischetti, ``Monte Carlo Simulation of Double-Gate Silicon-On-Insulator Inversion Layers: The Role of Volume Inversion,'' J.Appl.Phys., vol. 89, pp. 5478-5487, 2001.

162
L. Lucci, D. Esseni, P. Palestri, and L. Selmi, ``Comparative Analysis of Basic Transport Properties in the Inversion Layer of Bulk and SOI MOSFETs: A Monte-Carlo Study,'' in Proc. Proceeding of the 34th European Solid-State Device Research conference ESSDERC 2004, pp. 321-324, 21-23 Sept. 2004.

163
L. Lucci, P. Palestri, D. Esseni, L. Bergagnini, and L. Selmi, ``Multisubband Monte Carlo Study of Transport, Quantization, and Electron-Gas Degeneration in Ultrathin SOI n-MOSFETs,'' IEEE Trans.Electron Devices, vol. 54, pp. 1156-1164, May 2007.

164
S. Monfray, T. Skotnicki, P. Coronel, S. Harrison, D. Chanemougame, F. Payet, D. Dutartre, A. Talbot, and S. Borel, ``Applications of SiGe Material for CMOS and Related Processing,'' in Proc. Bipolar/BiCMOS Circuits and Technology Meeting, pp. 1-7, 8-10 Oct. 2006.

165
J. Hamel, Y. Tang, and K. Osman, ``Technological Requirements for a Lateral SiGe HBT Technology Including Theoretical Performance Predictions Relative to Vertical SiGe HBTs,'' IEEE Trans.Electron Devices, vol. 49, pp. 449-456, March 2002.

166
U. Konig, A. Gruhle, and A. Schuppen, ``SiGe Devices and Circuits: Where are Advantages over III/V ?,'' in Proc. th Annual IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium Technical Digest 1995, pp. 14-17, 29 Oct.-1 Nov. 1995.

167
J. Blakemore, ``Semiconductor and other Major Properties of Gallium Arsenide,'' J.Appl.Phys., vol. 53, pp. 123-181, 1982.

168
J. Ruch, ``Electron Dynamics in Short Channel Field-Effect Transistors,'' IEEE Trans.Electron Devices, vol. ED-19, pp. 652-654, 1972.

169
T. Aigo, H. Yashiro, A. Jono, A. Tachikawa, and A. Moritani, ``Comparison of Electronic Characteristics and Thermal Resistance for HEMTs Grown on GaAs and Si Substrates,'' Electron.Lett., vol. 28, pp. 1737-1738, 1992.

170
T. Ishida, T. Nonaka, C. Yamagishi, Y. Kawarada, Y. Sano, M. Akiyama, and K. Kaminishi, ``VIB-7 GaAs MESFET Ring Oscillator on Si Substrate,'' IEEE Trans.Electron Devices, vol. 31, pp. 1988-1988, Dec 1984.

171
I. Thayne, G. Jensen, M. Holland, C. Y. A. L. Weigi, A. Paulsen, J. Davies, S. Beaumont, and P. Bhattacharya, ``Comparison of 80-200 nm Gate Length Al.25aAs/GaAs/(GaAs:AlAs), Al.3aAs/In.15 aAs/GaAs, and In.52lAs/In.65aAs/InP HEMTs,'' IEEE Trans.Electron Devices, vol. 42, pp. 2047-2055, Dec. 1995.


next up previous contents
Next: Own Publications Up: Dissertation Martin-Thomas Vasicek Previous: 6. Summary and Conclusion

M. Vasicek: Advanced Macroscopic Transport Models