Next: Own Publications
Up: Dissertation Martin-Thomas Vasicek
Previous: 6. Summary and Conclusion
- 1
-
M. Lundstrom, Fundamentals of Carrier Transport.
Cambridge University Press, 2000.
- 2
-
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Gös, M. Vasicek,
O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina,
and S. Selberherr, ``A Multi-Purpose Schrödinger-Poisson Solver for TCAD
applications,'' J.Comput.Electronics, vol. 6, pp. 179-182, 2007.
- 3
-
M. Wagner, M. Karner, and T. Grasser, ``Quantum Correction Models for Modern
Semiconductor Devices,'' in Proceedings of the XIII International
Workshop on Semiconductor Devices, 2005.
- 4
-
T. Grasser, T. Tang, H. Kosina, and S. Selberherr, ``A Review of Hydrodynamic
and Energy-Transport Models for Semiconductor Device Simulation,'' Proceedings of the IEEE, vol. 91, pp. 251-274, 2003.
- 5
-
T. Grasser, H. Kosina, and S. Selberherr, ``Hot Carrier Effects within
Macroscopic Transport Models,'' Int. J. of High Speed Electronics and
Systems, vol. 13, pp. 973-901, 2003.
- 6
-
T. Grasser, H. Kosina, and S. Selberherr, ``Investigation of Spurious Velocity
Overshoot using Monte Carlo Data,'' Appl.Phys.Lett., vol. 79,
pp. 1900-1902, 2001.
- 7
-
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, ``On the Universality of
Inversion Layer Mobility in Si MOSFET's: Part I - Effects of Substrate
Impurity Concentration,'' IEEE Trans.Electron Devices, vol. 41,
pp. 2357-2362, 1994.
- 8
-
M. Levinshtein, S. Rumyantsev, and M. Shur, Properties of Advanced
Semiconductor Materials.
John Wiley & Sons, Inc., 2001.
- 9
-
S. Sze and K. Ng, Physics of Semiconductor Devices.
Wiley, 2007.
- 10
-
G. Moore, ``Cramming more Components onto Integrated Circuits,'' Electronics, vol. 38, 1965.
- 11
-
G. Moore, ``Lithography and the Future of Moore's Law,'' in Proc. SPIE,
1995.
- 12
-
S. I. Association, ``International Technology Roadmap for Semiconductors - 2007
Update, 2007,'' tech. rep., http://www.itrs.net, 2007.
- 13
-
G. Shahidi, ``SOI Technology for the GHz Era,'' IBM J.Res.Dev., vol. 46,
pp. 121-131, 2002.
- 14
-
D. Scharfetter and H. Gummel, ``Large-Signal Analysis of a Silicon Read Diode
Oscillator,'' IEEE Trans.Electron Devices, vol. 16, pp. 64-77, 1969.
- 15
-
T. Tang, ``Extension of the Scharfetter-Gummel Algorithm to the Energy Balance
Equation,'' IEEE Trans.Electron Devices, vol. ED-31, pp. 1912-1914,
1984.
- 16
-
R. Stratton, ``Diffusion of Hot and Cold Electrons in Semiconductor Barriers,''
Physical Review, vol. 126, no. 6, pp. 2002-2014, 1962.
- 17
-
T. Bordelon, V. Agostinelli, X. Wang, C. Maziar, and A. Tasch, ``Relaxation
Time Approximation and Mixing of Hot and Cold Electron Populations,'' Electronics Letters, vol. 28, pp. 1173-1175, 4 June 1992.
- 18
-
B. J. Geurts, M. Nekovee, H. M. J. Boots, and M. F. H. Schuurmans, ``Exact and
Moment Equation Modeling of Electron Transport in Submicron Structures,''
Appl.Phys.Lett., vol. 59, pp. 1743-1745, Sep 1991.
- 19
-
A. Abramo and C. Fiegna, ``Electron Energy Distributions in Silicon Structures
at low Applied Voltages and High Electric Fields,'' J.Appl.Phys.,
vol. 80, pp. 889-893, 1996.
- 20
-
T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, ``Using Six Moments of
Boltzmann's Transport Equation for Device Simulation,'' J.Appl.Phys.,
vol. 90, pp. 2389-2396, 2001.
- 21
-
T. Grasser, R. Kosik, C. Jungemann, H. Kosina, and S. Selberherr,
``Nonparabolic Macroscopic Transport Models for Device Simulation based on
Bulk Monte Carlo Data,'' J.Appl.Phys., vol. 97, no. 12, 2005.
- 22
-
C. Jacoboni and L. Reggiano, ``The Monte Carlo Method for the Solution of
Charge Transport in Semiconductors with Applications to Covalent Materials,''
Review of Modern Physics, vol. 55, pp. 645-705, 1983.
- 23
-
E. Ungersböck and H. Kosina, ``Monte Carlo Study of Electron Transport in
Strained Silicon,'' J.Comput.Electronics, vol. 5, pp. 79-83, 2006.
- 24
-
M. Nedjalkov, H. Kosina, and S. Selberherr, ``Monte Carlo Algorithms for
Stationary Device Simulations,'' Math. Comp. in Simulation, vol. 62,
pp. 453-461, 2003.
- 25
-
G. Meller, L. Li, and H. Kosina, ``Monte Carlo Simulation of Molecularly Doped
Organic Semiconductors,'' in 3rd European Conference on Organic
Electronics and Related Phenomena Book of Abstracts, 2005.
- 26
-
D. Venture, A. Gnudi, and G. Baccarani, ``Multidimensional Spherical Harmonics
Expansion of Boltzmann Equation for Transport in Semiconductors,'' Appl.Math.Lett., vol. 5, pp. 85-90, 1992.
- 27
-
V. Sverdlov, A. Gehring, H. Kosina, and S. Selberherr, ``Quantum Transport in
Ultra-Scaled Double-Gate MOSFETs: A Wigner Function-Based Monte Carlo
Approach,'' Solid-State Electron., vol. 49, pp. 1510-1515, 2005.
- 28
-
J. Wang and M. Lundstrom, ``Does Source-to-Drain Tunneling Limit the Ultimate
Scaling of MOSFETs?,'' in IEDM, 2002.
- 29
-
M. Lundstrom and Z. Ren, ``Essential Physics of Carrier Transport in Nanoscale
MOSFETs,'' IEEE Trans.Electron Devices, vol. 49, pp. 133-141, Jan.
2002.
- 30
-
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, ``Generalized Many-Channel
Conductance Formula with Application to Small Rings,'' Physical Review
B, vol. 31, pp. 6207-6215, 1985.
- 31
-
S. Datta, Quantum Transport Atom to Transistor.
Cambridge University Press, 2005.
- 32
-
H. Kosina, V. Sverdlov, and T. Grasser, ``Wigner Monte Carlo Simulation:
Particle Annihilation and Device Applications,'' in Proc. International
Conference on Simulation of Semiconductor Processes and Devices,
pp. 357-360, 6-8 Sept. 2006.
- 33
-
M. Nedjalkov, H. Kosina, and D. Vasileska, Wigner Ensemble Monte Carlo:
Challenges of 2D Nano-Device Simulation.
Springer-Verlag Berlin Heidelberg, 2008.
- 34
-
M. Fischetti, ``Theory of Electron Transport in Small Semiconductor Devices
using the Pauli Master Equation,'' J.Appl.Phys., vol. 83, pp. 270-291,
1998.
- 35
-
M. Fischetti, ``Master-Equation Approach to the Study of Electronic Transport
in Small Semiconductor Devices,'' Physical Review B, vol. 59,
pp. 4901-4917, 1999.
- 36
-
G. Lindblad, ``On the Generators of Quantum Dynamical Semigroups,'' Communications in Math. Phys., vol. 48, pp. 119-130, 1976.
- 37
-
S. Gao, ``Lindblad Approach to Quantum Dynamics of Open Systems,'' Physical Review B, vol. 57, pp. 4509-4517, 1998.
- 38
-
H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, and A. Messina,
``Solution of the Lindblad Equation in the Kraus Representation,'' Physical Review A, vol. 74, pp. 0621131-0621138, 2006.
- 39
-
A. Jüngel, Mathematical Modeling of Semiconductor Devices.
- 40
-
A. Prechtl, Vorlesungen über Theoretische Elektrotechnik, Zweiter Teil:
Elektrodynamik.
Institut für Grundlagen und Theorie der Elektrotechnik, TU Wien,
1998.
- 41
-
S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Springer Verlag Wien New york, 1984.
- 42
-
T. Grasser and M. Karner, Modellierung elektronischer Bauelemente.
Institute for Microelectronics, TU Vienna, 2006.
Lecture Notes.
- 43
-
E. Schrödinger, ``Quantisierung als Eigenwertproblem,'' Ann.Phys.,
vol. 79, no. 3, pp. 361-376, 1926.
- 44
-
M. Karner, ``Multi-Dimensional Simulation of Closed Quantum Systems,'' Master's
thesis, Technische Universität Wien Fakultät für Elektrotechnik, 2004.
- 45
-
F. Schwabl, Quantenmechanik für Fortgeschrittene.
Springer-Verlag Berlin Heidelberg, 2004.
- 46
-
Y. Tsividis, Operation and Modeling of the MOS Transistor.
McGraw-Hill Series in Electrical Engineering, 1987.
- 47
-
T. Ando, A. Fowler, and F. Stern, ``Electronic Properties of Two-Dimensional
Systems,'' Review of Modern Physics, vol. 1982, pp. 437-672, 1982.
- 48
-
D. Grau, Übungsaufgaben zur Quantentheorie.
Carl Hanser Verlag München Wien, 1993.
- 49
-
A. Trellakis, A. Galick, A. Pacelli, and U. Ravaioli, ``Iteration Scheme for
the Solution of the Two-Dimensional Schrödinger-Poisson Equations in
Quantum Structures,'' J.Appl.Phys., vol. 81, pp. 7881-7884, 1997.
- 50
-
M. Vasicek, M. Karner, E. Ungersböck, M. Wagner, H. Kosina, and T. Grasser,
``Modeling of Macroscopic Transport Parameters in Inversion Layers,'' in Simulation of Semiconductor Processes and Devices, 2007.
- 51
-
T. Grasser, ``Non-Parabolic Macroscopic Transport Models for Semiconductor
Device Simulation,'' Physica A, vol. 349, pp. 221-258, 2005.
- 52
-
P. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations.
Springer-Verlag Wien New York, 1990.
- 53
-
A. Jüngel, Transport Equations for Semiconductors.
Institut für Mathematik Johannes Gutenberg-Universität Mainz,
2004.
- 54
-
W. Nolting, Grundkurs Theoretische Physik 6: Statistische Physik.
Springer Berlin - Heidelberg, 2002.
- 55
-
A. Vlasov, ``On Vibration Properties of Electron Gas,'' J. Exp. Theor.
Phys., vol. 8, pp. 444-470, 1938.
- 56
-
W. Ludwig, Festkörperphysik.
Akademische Verlagsgesellschaft Wiesbaden, 1978.
- 57
-
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device
Simulation.
Springer Wien - New York, 1989.
- 58
-
P. Palestri, M. Mastrapasqua, A. Pacelli, and C. King, ``A
Drift-Diffusion/Monte Carlo Simulation Methodology for Si
Ge
HBT
Design,'' IEEE Trans.Electron Devices, vol. 49, pp. 1242-1249, July
2002.
- 59
-
C. Huang, T. Wang, C. Chen, M. Chang, and J. Fu, ``Modeling Hot-Electron Gate
Current in Si MOSFET's using a coupled Drift-Diffusion and Monte Carlo
Method,'' IEEE Trans.Electron Devices, vol. 39, pp. 2562-2568, Nov
1992.
- 60
-
S. Bandyopadhyay, M. Klausmeier-Brown, C. Maziar, S. Datta, and M. Lundstrom,
``A Rigorous Technique to Couple Monte Carlo and Drift-Diffusion Models for
Computationally Efficient Device Simulation,'' IEEE Trans.Electron
Devices, vol. 34, pp. 392-399, Feb 1987.
- 61
-
Ashcroft and Mermin, Solid State Physics.
Harcourt College Publishers, 1976.
- 62
-
H. S
rensen, P. Hansen, D. Petersen, S. Skelboe, and K. Stokbro, ``Efficient
Wave-Function Matching Approach for Quantum Transport Calculations,'' Physical Review B, vol. 79, pp. 205322-1-205322-10, 2009.
- 63
-
G. Bir and G. Pikus, Symmetry and Strain-Induced Effects in
Semiconductors.
J.Wiley & Sons New York, 1974.
- 64
-
C. Kittel, Quantentheorie der Festkörper.
Oldenburg, 1989.
- 65
-
M. Fischetti, ``Monte Carlo Simulation of Transport in Technologically
Significant Semiconductors of the Diamond and Zinc-Blend Structures-Part 1:
Homogeneous Transport,'' IEEE Trans.Electron Devices, vol. 38,
pp. 634-649, 1991.
- 66
-
M. Fischetti and S. Laux, ``Monte Carlo Simulation of Transport in
Technologically Significant Semiconductors of the Diamond and Zinc-Blende
Structures. II. Submicrometer MOSFET's,'' IEEE Trans.Electron Devices,
vol. 38, pp. 650-660, March 1991.
- 67
-
W. Nolting, Grundkurs Theoretische Physik 7: Viel-Teilchen-Theorie.
Springer, 2001.
- 68
-
F. Jensen, Introduction to Computational Chemistry.
Wiley, 2006.
- 69
-
R. Martin, Electronic Structure: Basic Theory and Practical Methods.
Cambridge Unversity Press, 2004.
- 70
-
E. Kane, ``Band Structure of Indium Antimonide,'' J.Phys.Chem.Solids,
vol. 1, pp. 249-261, 1957.
- 71
-
S. Laux and M. Fischetti, ``Monte-Carlo Simulation of Submicrometer Si
n-MOSFET's at 77 and 300 K,'' IEEE Electron Device Lett., vol. 9,
pp. 467-469, 1988.
- 72
-
B. Vinter, ``Subband Energies in N-Channel Inversion Channel on (111) Ge,''
Physical Review B, vol. 20, pp. 2395-2397, 1979.
- 73
-
S. Dhar, Analytical Mobility Models for Strained Silicon-Based Devices.
PhD thesis, Technische Universität Wien Fakultät für
Elektrotechnik, 2007.
- 74
-
M. Pourfath, Numerical Study of Quantum Transport in Carbon Nanotube-Based
Transistors.
PhD thesis, Technische Universität Wien Fakultät für
Elektrotechnik, 2007.
- 75
-
A. Gehring, Simulation of Tunneling in Semiconductor Devices.
PhD thesis, Technische Universität Wien Fakultät für
Elektrotechnik, 2003.
- 76
-
S. Datta, ``The Non-Equilibrium Green's Function (NEGF) Formalism: An
Elementary Introduction,'' in Proc. Digest. International Electron
Devices Meeting IEDM '02, pp. 703-706, 8-11 Dec. 2002.
- 77
-
R. Lake and S. Datta, ``Non-Equilibrium Green's Function Method Applied to
Double-Barrier Resonant-Tunneling Diodes,'' Physical Review B,
vol. 45, pp. 6670-6686, 1992.
- 78
-
S. Datta, ``Nanoscale Device Modeling: The Green's Function Method,'' Superlattices & Microstructures, vol. 28, pp. 253-278, 2000.
- 79
-
M. Anantram, M. Lundstrom, and D. Nikonov, ``Modeling of Nanoscale Devices,''
cond-mat/0610247, 2006.
- 80
-
H. Kosina, M. Nedjalkov, and S. Selberherr, ``A Monte Carlo Method Seamlessly
Linking Quantum and Classical Transport Calculations,'' J.Comput.Electronics, vol. 2, pp. 147-151, 2003.
- 81
-
V. Sverdlov, T. Grasser, and H. Kosina, ``Scattering and Space-Charge Effects
in Wigner Monte Carlo Simulations of Single and Double Barrier Devices,''
J.Comput.Electronics, vol. 5, pp. 447-450, 2006.
- 82
-
M. Nedjalkov, E. Atanassov, H. Kosina, and S. Selberherr, ``Operator-Split
Method for Variance Reduction in Stochastic Solutions of the Wigner
Equation,'' Monte Carlo Methods and Appl., vol. 10, pp. 461-468, 2004.
- 83
-
H. Kosina, M. Nedjalkov, and S. Selberherr, ``Solution of the Space-dependent
Wigner Equation using a Particle Model,'' Monte Carlo Methods and
Appl., vol. 10, pp. 359-368, 2004.
- 84
-
H. Kosina, ``Wigner Function Approach to Nano Device Simulation,'' Int. J.
Computational Science and Engineering, vol. 2, pp. 100-118, 2006.
- 85
-
E. Wigner, ``On the Quantum Correction for Thermodynamic Equilibrium,'' Physical Review, vol. 40, pp. 749-759, 1932.
- 86
-
M. Nedjalkov, H. Kosina, and S. Selberherr, Large-Scale Scientific
Computing, ch. A Weight Decomposition Approach to the Sign Problem in Wigner
Transport Simulations, pp. 178-184.
Springer Berlin/Heidelberg, 2004.
- 87
-
L. Shifren, C. Ringhofer, and D. Ferry, ``A Wigner Function-Based Quantum
Ensemble Monte Carlo Study of a Resonant Tunneling Diode,'' IEEE
Trans.Electron Devices, vol. 50, pp. 769-773, March 2003.
- 88
-
S. Bertoluzza and P. Pietra, ``Space-Frequency Adaptive Approximation for
Quantum Hydrodynamic Models,'' J. Trans. Theory and Stat. Phys,
vol. 29, pp. 375-395, 2000.
- 89
-
G. Paasch and H. Übensee, ``A Modified Local Density Approximation Electron
Density in Inversion Layers,'' Phys.stat.sol.(b), vol. 113,
pp. 165-178, 1982.
- 90
-
W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, ``Carrier Transport
near the Si/SiO2 Interface of a MOSFET,'' Solid-State Electron.,
vol. 32, pp. 839-849, 1989.
- 91
-
M. Wagner, M. Karner, J. Cervenka, M. Vasicek, H. Kosina, S. Holzer, and
T. T. Grasser, ``Quantum Correction for DG MOSFETs,'' J.Comput.Electronics, vol. 5, pp. 397-400, 2006.
- 92
-
C. Jungemann, C. Nguyen, B. Neinhüs, S. Decker, and B. Meinerzhagen,
``Improved Modified Local Density Approximation for Modeling of Size
Quantization in NMOSFETs,'' in Proc. Intl. Conf. Modeling and Simulation
of Microsystems 2001, 2001.
- 93
-
C. Nguyen, C. Jungemann, and B. Meinerzhagen, ``Modeling of Size Quantization
in Strained Si-nMOSFETs with the Improved Modified Local Density
Approximation,'' in NSTI-Nanotech, 2005.
- 94
-
M. Karner, M. Wagner, T. Grasser, and H. Kosina, ``A Physically Based Quantum
Correction Model for DG MOSFETs,'' in Materials Research Society Spring
Meeting (MRS), 2006.
- 95
-
M. V. Dort, P. Woerlee, and A. Walker, ``A Simple Model for Quantisation
Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions,'' Solid-State Electron., vol. 37, pp. 411-414, 1994.
- 96
-
F. Bufler, Y. Asahi, H. Yoshimura, C. Zechner, A. Schenk, and W. Fichtner,
``Monte Carlo Simulation and Measurement of Nanoscale n-MOSFETs,'' IEEE
Trans.Electron Devices, vol. 50, pp. 418-424, Feb. 2003.
- 97
-
C. Jungemann, ``Advances in Spherical Harmonics Solvers for the Boltzmann
Equation,'' in Proc. 9th International Conference on Solid-State and
Integrated-Circuit Technology ICSICT 2008, pp. 357-360, 20-23 Oct. 2008.
- 98
-
C. Levermore, ``Moment Closure Hierachies for Kinetic Theories,'' J.Stat.Phys., vol. 83, pp. 1021-1065, 1996.
- 99
-
A. Anile and O. Muscato, ``Improved Hydrodynamic Model for Carrier Transport in
Semiconductor,'' Physical Review B, vol. 51, pp. 728-740, 1995.
- 100
-
A. Anile and S. Pennisi, ``Extended Thermodynamics of the Blotekjaer
Hydrodynamical Model for Semiconductors,'' Continuum Mech. Thermodyn.,
vol. 4, pp. 187-197, 1992.
- 101
-
O. Muscato and V. Romano, ``Simulation of Submicron Silicon Diodes with a
Non-Parabolic Hydrodynamical Model based on the Maximum Entropy Principle,''
in Book of Abstracts Computational Electronics IWCE Glasgow 2000. 7th
International Workshop on, pp. 94-95, 22-25 May 2000.
- 102
-
B. Neinhüs, Hierarchische Bauelementsimulationen von Si/SiGe
Hochfrequenztransistoren.
PhD thesis, Universität Bremen, 2002.
- 103
-
S. C. Brugger, Moments of the Inverse Scattering Operator.
Series in Microelectronics, 2006.
- 104
-
K. Blotekjaer, ``Transport Equations for Electrons in Two-Valley
Semiconductors,'' IEEE Trans.Electron Devices, vol. ED-17, pp. 38-47,
Jan. 1970.
- 105
-
M. Gritsch, H. Kosina, T. Grasser, and S. Selberherr, ``Revision of the
Standard Hydrodynamic Transport Model for SOI Simulation,'' IEEE
Trans.Electron Devices, vol. 49, pp. 1814-1820, Oct. 2002.
- 106
-
M. Gritsch, Numerical Modeling of Silicon on Insulator MOSFETs.
PhD thesis, Technische Unviersität Wien Fakultät für
Elektrotechnik, 2002.
- 107
-
M. Wagner, Simulation of Thermoelectric Devices.
PhD thesis, Technischen Universität Wien Fakultät für
Elektrotechnik, 2007.
- 108
-
R. Kosik, T. Grasser, R. Entner, and K. Dragosits, ``On the Highest Order
Moment Closure Problem,'' in Proceedings IEEE International Spring
Seminar on Electronics Technology 27th ISSE 2004, pp. 118-120, IEEE, 2004.
- 109
-
T. Grasser, R. Kosik, C. Jungemann, B. Meinerzhagen, H. Kosina, and
S. Selberherr, ``A Non-Parabolic Six Moments Model for the Simulation of
Sub-100 nm Semiconductor Devices,'' J.Comput.Electronics, vol. 3,
pp. 183-187, 2004.
- 110
-
D. Caughey and R. Thomas, ``Carrier Mobilities in Silicon Empirically Related
to Doping and Field,'' Proc.IEEE, vol. 55, pp. 2192-2193, Dec. 1967.
- 111
-
S. Selberherr, W. Hänsch, M. Seavey, and J. Slotboom, ``The Evolution of the
MINIMOS Mobility Model,'' Archiv für Elektronik und
Übertragungstechnik, vol. 44, pp. 161-171, 1990.
- 112
-
C. Jungemann and B. Meinerzhagen, Hierachical Device Simulation The Monte
Carlo Perspective.
Springer Wien New York, 2003.
- 113
-
H. Wang, R.Jaszczak, and R. Coleman, ``Monte Carlo Modeling of Penetration
Effect for Iodine-131 Pinhole Imaging,'' IEEE J. Nuclear Science,
vol. 43, pp. 3272-3277, Dec. 1996.
- 114
-
G. Fishman, Monte Carlo Concepts, Algorithms, and Applications.
Springer Series in Operations Research, 1996.
- 115
-
M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics.
Oxford University Press, 2002.
- 116
-
T. Yu and K. Brennan, ``Monte Carlo Calculation of Two-Dimensional Electron
Dynamics in GaN&lGaN Heterostructures,'' J.Appl.Phys., vol. 91,
pp. 3730-3736, Mar 2002.
- 117
-
H. Kosina, M. Nedjalkov, and S. Selberherr, ``The Stationary Monte Carlo Method
for Device Simulation. I. Theory,'' Journal of Applied Physics,
vol. 93, pp. 3553-3563, Mar 2003.
- 118
-
R. Frühwirth and M. Regler, Monte-Carlo Methoden, Eine Einführung.
B. I. Wissenschaftsverlag Mannheim, Wien, Zürich, 1983.
- 119
-
H. Kosina, Simulation des Ladungstransportes in elektronischen
Bauelementen mit Hilfe der Monte-Carlo-Methode.
PhD thesis, Technischen Universität Wien Fakultät für
Elektrotechnik, 1992.
- 120
-
F. Bufler, Full-Band Monte Carlo Simulation of Nanoscale Strained-Silicon
MOSFETs.
Series in Microelectronics, 2003.
- 121
-
C. Jacoboni, ``A new Approach to Monte Carlo Simulation,'' in Proc.
International Electron Devices Meeting Technical Digest, pp. 469-472, 3-6
Dec. 1989.
- 122
-
C. Troger, Modellierung von Quantisierungseffekten in
Feldeffekttransistoren.
PhD thesis, Technische Universität Wien Fakultät für
Elektrotechnik, 2001.
- 123
-
L. Wang, ``Monte-Carlo-Simulation des Elektronentransports in Technologisch
Signifikanten Halbleitern,'' Master's thesis, Technische Universität Wien
Fakultät für Elektrotechnik, 1995.
- 124
-
T. Tang and H. Gan, ``Two Formulations of Semiconductor Transport Equations
based on Spherical Harmonic Expansion of the Boltzmann Transport Equation,''
IEEE Trans.Electron Devices, vol. 47, pp. 1726-1732, Sept. 2000.
- 125
-
C. Lang and N. Pucker, Mathematische Methoden in der Physik.
Spektrum Akademischer Verlag, 1998.
- 126
-
M. Abramowitz and A. Stegun, Handbook of Mathematical Functions.
United States Department of Commerce, 1972.
- 127
-
C. Jungemann, A. Pham, and B. Meinerzhagen, ``Stable Discretization of the
Boltzmann Equation based on Spherical Harmonics, Box Integration, and a
Maximum Entropy Dissipation Principle,'' J.Appl.Phys., vol. 100, p. 13,
2006.
- 128
-
K. Rahmat, ``Simulation of Hot Carriers in Semiconductor Devices,'' tech. rep.,
The Research Laboratory of Electronics Massachusetts Institute of Technology,
1995.
- 129
-
D. Ventura, A. Gnudi, and G. Baccarani, ``A Deterministic Approach to the
Solution of the BTE in Semiconductors,'' Revista Del Nuovo Cimento,
vol. 18, pp. 1-33, 1996.
- 130
-
S. Laux and M. Fischetti, ``Transport Models for Advanced Device
Simulation-Truth or Consequences?,'' in Proc. Bipolar/BiCMOS Circuits
and Technology Meeting the 1995, pp. 27-34, 2-3 Oct. 1995.
- 131
-
M. Vasicek, J. Cervenka, M. Wagner, M. Karner, and T. Grasser, ``A 2D
Non-Parabolic Six-Moments Model,'' Solid-State Electron., vol. 52,
pp. 1606-1609, 2008.
- 132
-
Institut für Mikroelektronik, Technische Universität Wien, Minimos-NT
2.0 User's Guide, I
E, 2002.
- 133
-
F. Agostino and D. Quercia, ``Short-Channel Effects in MOSFETs,'' tech. rep.,
Introduction to VLSI design (EECS 467), 2000.
- 134
-
F. Assaderaghi, P. Ko, and C. Hu, ``Observation of Velocity Overshoot in
Silicon Inversion Layers,'' IEEE Electron Device Lett., vol. 14,
pp. 484-486, Oct. 1993.
- 135
-
F. Assaderaghi, D. Sinitsky, H. Gaw, J. Bokor, P. Ko, and C. Hu, ``Saturation
Velocity and Velocity Overshoot of Inversion Layer Electrons and Holes,'' in
Proc. International Electron Devices Meeting Technical Digest,
pp. 479-482, 11-14 Dec. 1994.
- 136
-
A. Das and M. Lundstrom, ``Does Velocity Overshoot reduce Collector Delay Time
in AlGaAs/GaAs HBTs?,'' IEEE Electron Device Lett., vol. 12,
pp. 335-337, June 1991.
- 137
-
S. Laux and M. Fischetti, ``Monte Carlo Study of Velocity Overshoot in
Switching a 0.1-Micron CMOS Inverter,'' in Proc. International Electron
Devices Meeting Technical Digest, pp. 877-880, 7-10 Dec. 1997.
- 138
-
T. Mizuno and R. Ohba, ``Experimental study of carrier velocity overshoot in
sub-0.1 & devices-physical limitation of MOS structures,'' in Proc.
International Electron Devices Meeting, pp. 109-112, 8-11 Dec. 1996.
- 139
-
R. Quay, Analysis and Simulation of High Electron Mobility Transistors.
PhD thesis, Technische Universität Wien Fakultät für
Elektrotechnik, 2001.
- 140
-
A.Schenk, Halbleiterbauelemente-Physikalische Grundlagen und Simulation.
ETH Zurich, Integrated Systems Laboratory, 2001.
- 141
-
T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr, ``Characterization of
the Hot Electron Distribution Function using Six Moments,'' J.Appl.Phys., vol. 91, pp. 3869-3879, 2001.
- 142
-
L. Keldysh, ``Concerning the Theory of Impact Ionization in Semiconductors,''
Soviet Phys.JETP, vol. 21, pp. 1135-1144, 1965.
- 143
-
D. Chen, E. Kan, U. Ravaioli, C. Shu, and R. Dutton, ``An Improved Energy
Transport Model including Nonparabolicity and Non-Maxwellian Distribution
Effects,'' IEEE Electron Device Lett., vol. 13, no. 1, pp. 26-28,
1992.
- 144
-
D. Chen, E. Sangiorgi, M. Pinto, E. Kn, U. Ravaioli, and R. Dutton, ``Analysis
of Spurious Velocity Overshoot in Hydrodynamic Simulations,'' in Proc.
NUPAD IV Numerical Modeling of Processes and Devices for Integrated Circuits
Workshop on, pp. 109-114, 1992.
- 145
-
T. Tang, S. Ramaswamy, and J. Nam, ``An Improved Hydrodynamic Transport Model
for Silicon,'' IEEE Trans.Electron Devices, vol. 40, no. 8,
pp. 1469-1477, 1993.
- 146
-
D. Esseni and A. Abramo, ``Modeling of Electron Mobility Degradation by Remote
Coulomb Scattering in Ultrathin Oxide MOSFETs,'' IEEE Trans.Electron
Devices, vol. 50, pp. 1665-1674, July 2003.
- 147
-
D. Esseni, ``On the Modeling of Surface Roughness Limited Mobility in SOI
MOSFETs and Its Correlation to the Transistor Effective Field,'' IEEE
Trans.Electron Devices, vol. 51, pp. 394-401, March 2004.
- 148
-
L. Lucci, P. Palestri, D.Esseni, and L.Selmi, ``Multi-Subband Monte Carlo
Modeling of Nano-MOSFETs with Strong Vertical Quantization and Electron Gas
Degeneration,'' in IEEE International Electron Devices Meeting, 2005.
- 149
-
B. Neinhüs, C. Nguyen, C. Jungemann, and B. M. u, ``A CPU Efficient Electron
Mobility Model for MOSFET Simulation with Quantum Corrected Charge
Densities,'' in Solid-State Device Research Conference, 2000. Proceeding
of the 30th European, 2000.
- 150
-
M. Fischetti and S. Laux, ``Monte Carlo Study of Electron Transport in Silicon
Inversion Layers,'' in Proc. International Electron Devices Meeting
Technical Digest, pp. 721-724, 13-16 Dec. 1992.
- 151
-
M. Fischetti and S. Laux, ``Monte Carlo Study of Sub-Band-Gap Impact Ionization
in Small Silicon Field-Effect Transistors,'' in Proc. International
Electron Devices Meeting, pp. 305-308, 10-13 Dec. 1995.
- 152
-
M. Fischetti, S. Laux, and A. Kumar, ``Simulation of Quantum Transport in Small
Semiconductor Devices,'' in Proc. International Conference on Simulation
of Semiconductor Processes and Devices SISPAD 2005, pp. 19-22, 01-03 Sept.
2005.
- 153
-
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, H. Kosina,
T. Grasser, and S. Selberherr, ``VSP - A Multi-Purpose Schrödinger-Poisson
Solver for TCAD Applications,'' in 11th Workshop on Computational
Electronics, 2006.
- 154
-
Institut für Mikroelektronik, Technische Universität Wien, VMC 2.0
Users Guide, 2006.
- 155
-
S. Jin, M. Fischetti, and T. Wang, ``Modeling of Surface-Roughness Scattering
in Ultrathin-Body SOI MOSFETs,'' IEEE Trans.Electron Devices, vol. 54,
pp. 2191-2203, 2007.
- 156
-
S. Goodnick, D. Ferry, C. Wilmsen, Z. Liliental, D. Fathy, and O. Krivanek,
``Surface Roughness at the Si(100)-SiO2 Interface,'' Physical Review B,
vol. 32, pp. 8171-8186, 1985.
- 157
-
D. Ferry and S. Goodnick, Transport in Nanostructures.
Cambridge University Press, 1997.
- 158
-
R. Prange and T. Nee, ``Quantum Spectroscopy of the Low-Field Oscillations in
the Surface Impedance,'' Physical Review, vol. 168, pp. 779-786, 1968.
- 159
-
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, ``On the Universality of
Inversion Layer Mobility in Si MOSFET's: Part 11-Effects of Surface
Orientation,'' IEEE Trans.Electron Devices, vol. 41, pp. 2363-2368,
1994.
- 160
-
A. Khakifirooz and D. Antoniadis, ``On the Electron Mobility in Ultrathin SOI
and GOI,'' IEEE Trans.Electron Devices Letters, vol. 25, pp. 80-82,
2004.
- 161
-
F. Gamiz and M. V. Fischetti, ``Monte Carlo Simulation of Double-Gate
Silicon-On-Insulator Inversion Layers: The Role of Volume Inversion,'' J.Appl.Phys., vol. 89, pp. 5478-5487, 2001.
- 162
-
L. Lucci, D. Esseni, P. Palestri, and L. Selmi, ``Comparative Analysis of Basic
Transport Properties in the Inversion Layer of Bulk and SOI MOSFETs: A
Monte-Carlo Study,'' in Proc. Proceeding of the 34th European
Solid-State Device Research conference ESSDERC 2004, pp. 321-324, 21-23
Sept. 2004.
- 163
-
L. Lucci, P. Palestri, D. Esseni, L. Bergagnini, and L. Selmi, ``Multisubband
Monte Carlo Study of Transport, Quantization, and Electron-Gas Degeneration
in Ultrathin SOI n-MOSFETs,'' IEEE Trans.Electron Devices, vol. 54,
pp. 1156-1164, May 2007.
- 164
-
S. Monfray, T. Skotnicki, P. Coronel, S. Harrison, D. Chanemougame, F. Payet,
D. Dutartre, A. Talbot, and S. Borel, ``Applications of SiGe Material for
CMOS and Related Processing,'' in Proc. Bipolar/BiCMOS Circuits and
Technology Meeting, pp. 1-7, 8-10 Oct. 2006.
- 165
-
J. Hamel, Y. Tang, and K. Osman, ``Technological Requirements for a Lateral
SiGe HBT Technology Including Theoretical Performance Predictions Relative to
Vertical SiGe HBTs,'' IEEE Trans.Electron Devices, vol. 49,
pp. 449-456, March 2002.
- 166
-
U. Konig, A. Gruhle, and A. Schuppen, ``SiGe Devices and Circuits: Where are
Advantages over III/V ?,'' in Proc. th Annual IEEE Gallium Arsenide
Integrated Circuit (GaAs IC) Symposium Technical Digest 1995, pp. 14-17, 29
Oct.-1 Nov. 1995.
- 167
-
J. Blakemore, ``Semiconductor and other Major Properties of Gallium Arsenide,''
J.Appl.Phys., vol. 53, pp. 123-181, 1982.
- 168
-
J. Ruch, ``Electron Dynamics in Short Channel Field-Effect Transistors,'' IEEE Trans.Electron Devices, vol. ED-19, pp. 652-654, 1972.
- 169
-
T. Aigo, H. Yashiro, A. Jono, A. Tachikawa, and A. Moritani, ``Comparison of
Electronic Characteristics and Thermal Resistance for HEMTs Grown on GaAs and
Si Substrates,'' Electron.Lett., vol. 28, pp. 1737-1738, 1992.
- 170
-
T. Ishida, T. Nonaka, C. Yamagishi, Y. Kawarada, Y. Sano, M. Akiyama, and
K. Kaminishi, ``VIB-7 GaAs MESFET Ring Oscillator on Si Substrate,'' IEEE Trans.Electron Devices, vol. 31, pp. 1988-1988, Dec 1984.
- 171
-
I. Thayne, G. Jensen, M. Holland, C. Y. A. L. Weigi, A. Paulsen, J. Davies,
S. Beaumont, and P. Bhattacharya, ``Comparison of 80-200 nm Gate Length
Al.25aAs/GaAs/(GaAs:AlAs), Al.3aAs/In.15 aAs/GaAs, and In.52lAs/In.65aAs/InP
HEMTs,'' IEEE Trans.Electron Devices, vol. 42, pp. 2047-2055, Dec.
1995.
Next: Own Publications
Up: Dissertation Martin-Thomas Vasicek
Previous: 6. Summary and Conclusion
M. Vasicek: Advanced Macroscopic Transport Models