4.1.1 Maxwell's Equations

The basic equations solved in a device simulator can be derived from Maxwell's equations. The four partial differential equations relate the electric field ( $ \ensuremath{\mathitbf{E}}$), the displacement field ( $ \ensuremath{\mathitbf{D}}$), the magnetic field ( $ \ensuremath{\mathitbf{H}}$), and the induction field ( $ \ensuremath{\mathitbf{B}}$) vectors to the current density ( $ \ensuremath{\mathitbf{J}}$) and the electric charge density ( $ \ensuremath{\rho}$):

$\displaystyle \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla}}}\times} \ensuremath{\mathitbf{H}}$ $\displaystyle =$ $\displaystyle \ensuremath{\mathitbf{J}} + \frac{\partial \ensuremath{\mathitbf{D}}}{\partial t}$ (4.1)
$\displaystyle \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla}}}\times} \ensuremath{\mathitbf{E}}$ $\displaystyle =$ $\displaystyle - \frac{\partial \ensuremath{\mathitbf{B}}}{\partial t}$ (4.2)
$\displaystyle \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla}}}\ensuremath{\cdot}} \ensuremath{\mathitbf{D}}$ $\displaystyle =$ $\displaystyle \ensuremath{\rho}$ (4.3)
$\displaystyle \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla}}}\ensuremath{\cdot}} \ensuremath{\mathitbf{B}}$ $\displaystyle =$ $\displaystyle 0.$ (4.4)


S. Vitanov: Simulation of High Electron Mobility Transistors