next up previous index
Next: 4.2 Code structure Up: 4 Implementation Issues Previous: 4 Implementation Issues

4.1 Summary of the Equations Describing SET Devices

  The condition to simulate the electron transport as a jump process is
\begin{gather}R_T > \frac{h}{e^2} \doteq \text{25813}\ \mathsf{\Omega}.\notag
\end{gather}
Rate formulas for first and higher order transitions are
\begin{gather}\Gamma(\Delta F) =\frac{1}{e^2R_T}\frac{-\Delta F}{1-e^{\frac{\Del...
...
\prod_{i=1}^{N-1}\left((2\pi k_BTi)^2+\Delta F_N^2\right).
\notag
\end{gather}
The free energy is given by
\begin{align}F=&\frac{1}{2}\begin{bmatrix}\boldsymbol{\varphi_{p,f}}^T&\boldsymb...
...f_{\text{final}}})+
\sum_{i=1}^{N_c}
(\Delta E_{Fi}+E_{Ni}).\notag
\end{align}
The ME and the duration to the next tunnel event for a MC method are
\begin{gather}\frac{\partial P_i(t)}{\partial t} = \sum_{j\neq i} \left[\Gamma_{...
...Gamma_{ji}P_i(t)\right]\notag\\
\tau=-\frac{\ln(r)}{\Gamma}.\notag
\end{gather}




Christoph Wasshuber