next up previous contents
Next: Own Publications Up: Dissertation Wilfried Wessner Previous: B.3 Volume Integral

Bibliography

1
S. Selberherr, Analysis and Simulation of Semiconductor Devices.Springer, 1984.

2
J. F. Thompson, B. K. Soni, and N. P. Weatherill, Eds., Handbook of Grid Generation.CRC Press, 1999.

3
S. J. Owen, ``Mesh Generation and Automated Simulation, Part I: Introduction to Mesh Generation Algorithm Development.'' [Online]. Available: http://www.imr.sandia.gov/papers/tumg4/owen-short-course.zip.

4
P. J. Frey and P.-L. George, Mesh Generation, 1st ed.Hermes, 2000.

5
``7$ ^{th}$ National Congress on Computational Mechanics,'' http://www.cfd.sandia.gov/USscowen.html.

6
``Mesh Generation and Automated Simulation,'' http://www.andrew.cmu.edu/user/sowen/usnccm03/short_course.html.

7
S. J. Owen, ``Non-Simplical Unstructured Mesh Generation,'' Dissertation, Garnegie Mellon University, Pittsburgh, PA. U.S.A., 1999, http://www.andrew.cmu.edu/user/sowen/abstracts/Ow644.html.

8
S. J. Owen, ``A Survey of Unstructured Mesh Generation Technology.'' [Online]. Available: http://www.andrew.cmu.edu/user/sowen/survey/index.html

9
O. Ushakova, Advances in Grid Generation.Nova Science Publisher, 2005.

10
S. Ivanenko, Selected Chapters on Grid Generation and Applications.Dorodnicyn Computing Center of the Russian Academy of Sciences, 2004.

11
S. J. Owen, ``Meshing Research Corner,'' http://www.andrew.cmu.edu/user/sowen/mesh.html.

12
R. Schneiders, ``Mesh Generation: Software,'' http://www-users.informatik.rwth-aachen.de/ roberts/software.html.

13
``TetrUSS,'' http://tetruss.larc.nasa.gov.

14
``TRUEGRID $ ^$\textregistered , a Registered Trademark of XYZ Scientific Applications, Inc,'' http://www.truegrid.com.

15
``ABAQUS, Inc.'' http://www.abaqus.com.

16
``ANSYS, Inc.'' http://www.ansys.com.

17
P. Fleischmann, ``Mesh Generation for Technology CAD in Three Dimensions,'' Dissertation, Technische Universität Wien, 2000, http://www.iue.tuwien.ac.at/phd/fleischmann.

18
``Institute for Microlectronics,'' http://www.iue.tuwien.ac.at.

19
J. Schöberl, ``NETGEN - Automatic Mesh Generator.'' [Online]. Available: http://www.hpfem.jku.at/netgen.

20
``ISE, Integrated Systems Engineering,'' http://www.ise.ch.

21
``SYNOPSYS,'' http://www.synopsys.com.

22
``COMSOL, Inc.'' http://www.comsol.com.

23
``SolidWorks Corporation,'' http://www.solidworks.com.

24
R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser, ``A High Performance Generic Scientific Simulation Environmemt,'' in Proc. of the PARA Conference, 2006, p. 64.

25
U. Breymann, Die C++ Standard Template Library.Addison-Wesely, 1996.

26
G. Berti, ``Generic Software Components for Scientific Computing,'' Dissertation, Universität Dortmund, 2000.

27
CGAL User and Reference Manual: All Parts, 2004. [Online]. Available: http://www.cgal.org.

28
J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library.Addison-Wesley, 2001.

29
``Boost C++ Libraries,'' http://www.boost.org.

30
T. Binder, ``Rigorous Integration of Semiconductor Process and Device Simulators,'' Dissertation, Technische Universität Wien, 2002, http://www.iue.tuwien.ac.at/phd/binder.

31
J. Cervenka, ``Three-Dimensional Mesh Generation for Device and Process Simulation,'' Dissertation, Technische Universität Wien, 2004, http://www.iue.tuwien.ac.at/phd/cervenka.

32
R. Bauer, ``Numerische Berechnung von Kapazitäten in Dreidimensionalen Verdrahtungsstrukturen,'' Dissertation, Technische Universität Wien, 1994, http://www.iue.tuwien.ac.at/phd/bauer.

33
S. S. Skiena, The Algorithm Design Manual, 1st ed.Springer, 1997.

34
P.-L. George and H. Borouchaki, Delaunay Triangulation and Meshing, 1st ed.Hermes, 1998.

35
I. Babuska and M. Suri, ``The P and H-P Versions of the Finite Element Method, Basic Principles and Properties ,'' SIAM Review, vol. 36, no. 4, pp. 578 - 632, 1994.

36
E. Leitner and S. Selberherr, Simulation of Semiconductor Devices and Processes.Springer, 1995, vol. 6, ch. Three-Dimensional Grid Adaptation Using a Mixed-Element Decomposition Method, pp. 464 - 467.

37
M.-C. Rivara and G. Iribarren, ``The 4-Triangles Longest-side Partition of Triangles and Linear Refinement Algortithms,'' Mathematics of Computation, vol. 65, no. 216, pp. 1485 - 1502, 1996.

38
A. Plaza and G. Carey, ``About Local Refinement of Tetrahedral Grids Based on Local Bisection,'' in Proc. 5th International Meshing Roundtable (IMR), 1996, pp. 123 - 136.

39
M.-C. Rivara, ``Mesh Refinement Processes Based on the Generalized Bisection of Simplices,'' SIAM Journal on Numerical Analysis (SINUM), vol. 21, no. 3, pp. 604 - 613, 1984.

40
D. N. Arnold, A. Mukherjee, and L. Pouly, ``Locally Adapted Tetrahedral Meshes Using Bisection,'' SIAM Journal on Scientific Computing (SISC), vol. 22, no. 2, pp. 431 - 448, 2000.

41
A. Liu and B. Joe, ``On the Shape of Tetrahedra from Bisection,'' Mathematics of Computation, vol. 63, no. 207, pp. 141 - 154, 1994.

42
C. Özturan, ``Worst Case Complexity of Parallel Triangular Mesh Refinement by Longest Edge Bisection.'' [Online]. Available: http://citeseer.ist.psu.edu/308417.html.

43
R. Kosik, P. Fleischmann, B. Haindl, P. Pietra, and S. Selberherr, ``On the Interplay Between Meshing and Discretization in Three-Dimensional Diffusion Simulation,'' IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 11, pp. 1233 - 1240, 2000.

44
J. M. Maubach, ``Local Bisection Refinement for $ N$ -Simplicaial Grids Generated by Reflection,'' SIAM Journal on Scientific Computing (SISC), vol. 16, no. 1, pp. 210 - 227, 1995.

45
I. Kossaczký, ``A Recursive Approach to Local Mesh Refinement in Two or Three Dimensions,'' Elsevier Journal of Computational and Applied Mathematics, vol. 55, no. 3, pp. 275 - 288, 1994.

46
I. T. Jolliffe, Principal Component Analysis, 2nd ed.Springer, 2002.

47
L. I. Smith, ``A Tutorial on Principal Component Analysis.'' [Online]. Available: http://kybele.psych.cornell.edu/ edelman/Psych-465-Spring-2003/PCA-tutorial.pdf.

48
S. Yamakawa and K. Shimada, ``High Quality Anisotropic Tetrahedral Mesh Generation via Ellipsoidal Bubble Packing,'' in Proc. 9th International Meshing Roundtable (IMR), 2000, pp. 263 - 273.

49
A. Gray, Metrics on Surfaces, 2nd ed.CRC Press, 1997.

50
E. W. Weisstein, ``Metric,'' From MathWorld - A Wolfram Web Resource. [Online]. Available: http://mathworld.wolfram.com/Metric.html.

51
L. Kelly, The Geometry of Metric and Linear Spaces.Springer, 1975.

52
T. Wischgoll and J. Meyer, Visualization and Processing of Tensor Fields, ser. Mathematics+Visualization.Springer, 2006, ch. Locating Closed Hyperstreamlines in Second Order Tensor Fields.

53
W. Benger and H. Hege, Visualization and Processing of Tensor Fields, ser. Mathematics+Visualization. Springer, 2006, ch. Strategies for Direct Visualization of Second-Rank Tensor Fields.

54
M. A. Akivis and V. V. Goldberg, An Introduction to Linear Algebra and Tensors.Dover, 1977.

55
J. C. Kolecki, ``An Introduction to Tensors for Students of Physics and Engineering,'' NASA STI, NASA/TM-2002-211716, 2002, National Aeronautics and Space Administration, Glenn Research Center. [Online]. Available: http://www.grc.nasa.gov/WWW/K-12/Numbers/Math/documents/Tensors_TM2002211716.pdf.

56
G. Schmicki and P. Seegebrecht, Prozeßtechnologie.Springer, 1991.

57
S. Mauch, ``A Fast Algorithm for Computing the Closest Point and Distance Transform,'' Caltech ASCI Technical Report 007, vol. caltechASCI/2000.077, pp. 1 - 17, 2000, California Institute of Technology.

58
A. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists.CRC Press, 2001.

59
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, 2nd ed.Springer, 2004.

60
A. Prechtl, Vorlesungen über die Grundlagen der Elektrotechnik.Springer, 1994, vol. 1.

61
S. J. Ahn, Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space, 1st ed.Springer, 2005.

62
C. Ueberhuber, Computer-Numerik 2.Springer, 1995.

63
``Linear Least Squares,'' From Wikipedia, The Free Encyclopedia. [Online]. Available: http://en.wikipedia.org/wiki/Linear_least_squares.

64
S. M. Sze, Ed., VLSI Technology, 2nd ed.McGraw-Hill, 1988.

65
J. M. Caywood, C. J. Huang, and Y. J. Chang, ``A Novel Nonvolatile Memory Cell Suitable for Both Flash and Byte-Writable Applications,'' IEEE Trans. Electron Devices, vol. 49, no. 5, pp. 802 - 807, 2002.

66
A. Hössinger, R. Minixhofer, and S. Selberherr, ``Full Three-Dimensional Analysis of a Non-Volatile Memory Cell,'' in Proc. Simulation of Semiconductor Processes and Devices, 2004, pp. 129 - 132.

67
DIOS-ISE, ISE TCAD Release 9.0, ISE Integrated System Engineering AG, 2003.

68
A. Hössinger, T. Binder, W. Pyka, and S. Selberherr, ``Advanced Hybrid Cellular Based Approach for Three-Dimensional Etching and Deposition Simulation,'' in Proc. Simulation of Semiconductor Processes and Devices, 2001, pp. 424 - 427.

69
R. P. Feynman, The Feynman Lectures on Physics.Addison Wesley, 1971, vol. 1, ch. 43. Diffusion.

70
J. Crank, The Mathematics of Diffusion, 2nd ed.Clarendon Press, 1975.

71
``Diffusion,'' From Wikipedia, The Free Encyclopedia. [Online]. Available: http://en.wikipedia.org/wiki/Diffusion.

72
O. Zienkiewicz, The Finite Element Method.McGraw-Hill, 1977.

73
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinemnet Techniques, 1st ed. B. G. Teubner, 1996.

74
M. Ainsworth, J. Zhu, A. Craig, and O. Zienkiewicz, ``Analysis of the Zienkiewicz-Zhu A-Posteriori Error Estimator in the Finite Element Method,'' International Journal for Numerical Methods in Engineering, vol. 28, no. 9, pp. 2161 - 2174, 1989.

75
I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability.Oxford University Press, 2001.

76
I. Babuska and W. Rheinboldt, ``Error Estimates for Adaptive Finite Element Computations,'' SIAM Journal on Numerical Analysis (SINUM), vol. 15, no. 4, pp. 736 - 754, 1978.

77
R. Bank and R. Smith, ``Mesh Smoothing Using a Posteriori Error Estimates,'' SIAM Journal on Numerical Analysis (SINUM), vol. 34, no. 3, pp. 979 - 997, 1997.

78
R. Bank and J. Xu, ``Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids,'' SIAM Journal on Numerical Analysis (SINUM), vol. 41, no. 6, pp. 2313 - 2332, 2003.

79
R. H. Nochetto, ``Pointwise A Posteriori Error Estimates for Elliptic Problems on Highly Graded Meshes,'' Mathematics of Computation, vol. 64, no. 209, pp. 1 - 22, 1995.

80
T. Blacker and T. Belychko, ``Superconvergent Patch Recovery with Equilibrium and Conjoint Interpolant Enhancements,'' International Journal for Numerical Methods in Engineering, vol. 37, no. 3, pp. 517 - 536, 1994.

81
L. Du and N. Yan, ``Gradient Recovery Type A Posteriori Error Estimate for Finite Element Approximation on Non-Uniform Meshes,'' Advances in Computational Mathematics, vol. 14, pp. 175 - 193, 2001.

82
E. Arai, D. Iida, H. Asai, Y. Ieki, H. Uchida, and M. Ichimura, ``Applicability of Phosphorus and Boron Diffusion Parameters Extracted from Predeposition to Drive-in Diffusion for Bulk Silicon and Silicon-on-Insulator,'' Japanese Journal of Applied Physics (JJAP), vol. 42, no. 4A, pp. 1503 - 1510, 2003.

83
M. Mahadevan and R. Bradley, ``Simulations and Theory of Electromigration Induced Slit Formation in Unpassivated Single-crystal Metal Lines.'' Physical Review B, vol. 59, no. 16, pp. 11  037 - 11  046, 1999.

84
H. Ceric, ``Numerical Techniques in Modern TCAD,'' Dissertation, Technische Universität Wien, 2005, http://www.iue.tuwien.ac.at/phd/ceric.

85
J. Black, ``Electromigration-A Brief Survey and Some Recent Results,'' IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338 - 347, 1969.

86
P.-E. Zörner, This image is licensed under the Creative Commons Attribution Share Alike License v. 2.0 http://creativecommons.org/licenses/by-sa/2.0/. [Online]. Available: http://en.wikipedia.org/wiki/Image:Leiterbahn_ausfallort_elektromigration.jpg.

87
A. Buerke, H. Wendrock, and K. Wetzig, ``Study of Electromigration Damage in Al Interconnect Lines inside a SEM,'' Crystal Research and Technology, vol. 6-7, no. 35, pp. 721 - 730, 2000.

88
J. Bloomenthal, Ed., Introduction to Implicit Surfaces.Morgan Kaufman Publishers, 1997.

89
M. Barlie, T. Rowland, and E. W. Weisstein, ``Codimension,'' From MathWorld - A Wolfram Web Resource. [Online]. Available: http://mathworld.wolfram.com/Codimension.html.

90
G. E. Farin and D. Hansford, The Geometry Toolbox for Graphics and Modeling.AK Peters, Ltd., 1998.

91
J. W. Harris and H. Stocker, Handbook of Mathematics and Computational Science.Springer, 1998.

92
J. R. Munkres, Analysis on Manifolds.Perseus Books, 1990.

93
R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed.McGraw-Hill, 1999.

94
S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, 1st ed.Springer, 2002.

95
J. Spanier, An Atlas of Functions, 1st ed.Taylor and Francis, 1987.

96
E. W. Weisstein, ``Heaviside Step Function,'' From MathWorld - A Wolfram Web Resource. [Online]. Available: http://mathworld.wolfram.com/HeavisideStepFunction.html.

97
U. Weikard, ``Numerische Lösungen der Cahn-Hilliard-Gleichung und der Cahn-Larche-Gleichung,'' Dissertation, Rheinische Friedrich-Wilhelms Universität Bonn, 2002.

98
H. Ceric and S. Selberherr, ``An Adaptive Grid Approach for the Simulation of Electromigration Induced Void Migration,'' IEICE Trans. Electronics, vol. 3, no. E86-C, pp. 421 - 426, 2003.

99
H. Ceric and S. Selberherr, ``Simulative Prediction of the Resistance Change due to Electromigration Induced Void Evolution,'' Microelectronics Reliability, vol. 42, no. 9-11, pp. 1457 - 1460, 2002.

100
H. Pottmann and J. Wallner, Computational Line Geometry.Springer, 2001.

101
C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method.Cambridge University Press, 1987.

102
V. Sukharev, R. Choudhury, and C. W. Park, ``3-D Physically-Based Electromigration Simulation in Copper - Low-K Interconnect,'' in Proc. Simulation of Semiconductor Processes and Devices, G. Wachutka and G. Schrag, Eds.Springer, 2004, pp. 335 - 338.

103
C. Geuzaine and J.-F. Remacle, ``Gmsh: A Three-Dimensional Finite Element Mesh Generator.'' [Online]. Available: http://www.geuz.org/gmsh.

104
R. Sabelka and S. Selberherr, ``SAP -- A Program Package for Three-Dimensional Interconnect Simulation,'' in Proc. International Interconnect Technology Conference, 1998, pp. 250 - 252.

105
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation.Springer, 1989.

106
T. Grasser, R. Kosik, C. Jungemann, H. Kosina, and S. Selberherr, ``Nonparabolic Macroscopic Transport Models for Device Simulation Based On Bulk Monte Carlo Data,'' Journal of Applied Physics, vol. 97, no. 093710, pp. 1 - 12, 2005.

107
D. Ferry and C. Jacoboni, Quantum Transport in Semiconductors.Plenum, 1992.

108
G. A. Holton, Value-at-Risk: Theory and Practice.Academic Press, 2003, ch. 5 Monte Carlo Method.

109
R. Eckhardt, ``Stan Ulam, John von Neumann, and the Monte Carlo Method,'' Los Alamos Science, Special Issue, no. 15, pp. 131 - 137, 1987.

110
T. Giebel, Grundlagen der CMOS-Technologie.B. G. Teubner, 2002.

111
B. Sapoval and C. Hermann, Physics of Semiconductors, 2nd ed.Springer, 2003.

112
C. Jungemann and B. Meinzerhagen, Hierarchical Device Simulation, The Monte-Carlo Perspective, S. Selberherr, Ed.Springer, 2003.

113
O. Madelung, Introduction to Solid State Theory.Springer, 1978.

114
M. Lundstrom, Fundamentals of Carrier Transport, 2nd ed.Campridge University Press, 2000.

115
M. V. Fischetti, ``Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures - Part I: Homogeneous Transport,'' IEEE Trans. Electron Devices, vol. 38, pp. 634 - 649, 1991.

116
J. Singh, Physics of Semiconductors and their Heterostructures.McGraw-Hill, 1993.

117
B. Fischer, ``A Full-Band Monte Carlo Charge Transport Model for Nanoscale Silicon Devices Including Strain,'' Dissertation, University Hannover, 1999.

118
G. Lehmann and M. Taut, ``On the Numerical Calculation of the Density of States and Related Properties,'' Physica Status Solidi B, vol. 54, pp. 469 - 477, 1972.

119
B. Czermak, ``Monte-Carlo Simulation des Stationären Elektronentransportes in Polaren Halbleitern,'' Diplomarbeit, Technische Universität Wien, 1993.

120
W. Harrison, Solid State Theory. McGraw-Hill, 1970.

121
G. M. Dunn, G. J. Rees, J. P. R. David, S. A. Plimmer, and D. C. Herbert, ``Monte Carlo Simulation of Impact Ionization and Current Multiplication in Short GaAs p$ ^+$ in$ ^+$ Diodes,'' Semiconductor Science and Technology, vol. 12, pp. 111 - 120, 1997.

122
F. Bufler, Full-Band Monte Carlo Simulation of Electrons and Holes in Strained Si and SiGe.Herbert Utz Verlag, 1998.

123
C. Kittel, Elementary Statistical Physics.Dover, 1986.

124
N. V. Kampen, Stochastic Processes in Physics and Chemistry.Elsevier, 1992.

125
H. Weston, ``A Note on Standard Deviation.'' [Online]. Available: http://mathcentral.uregina.ca/RR/database/RR.09.95/weston2.html.

126
V. Krishnan, Probability and Random Processes, ser. Wiley Survival Guides in Engineering and Science. Wiley, 2006.

127
R. C. Gonzalez and R. E. Woods, Digital Image Processing.Addison Wessley, 1992.

128
J. Weickert and H. Hagen, Eds., Visualization and Processing of Tensor Fields, ser. Mathematics+Visualization.Springer, 2006.

129
G.-P. Bonneau, T. Ertl, and G. Nielson, Eds., Scientific Visualization: The Visual Extraction of Knowledge from Data, ser. Mathematics+Visualization.Springer, 2006.

130
G. Kindlmann and C.-F. Westin, ``Diffusion Tensor Visualization with Glyph Packing,'' IEEE Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1329 - 1336, 2006.

131
B. Cabral and C. Leedom, ``Imaging Vector Fields Using Line Integral Convolution,'' in Proc. ACM SIGGRAPH 1993.Addison Weseley, 1993, pp. 263 - 270.

132
T. Delmarcelle and L. Hesselink, ``Visualizing Second-Order Tensor Fields with Hyper Streamlines,'' IEEE Computer Graphics and Applications, vol. 13, no. 4, pp. 25 - 33, 1993.

133
E. W. Weisstein, ``Euler Angles,'' from MathWorld - A Wolfram Web Resource. [Online]. Available: http://mathworld.wolfram.com/EulerAngles.html.

134
M. Ledvij, ``Curve Fitting Made Easy,'' The Industrial Physicist, vol. 9, no. 2, April/May 2003.

135
E. W. Weisstein, ``Least Squares Fitting,'' from MathWorld - A Wolfram Web Resource. [Online]. Available: http://mathworld.wolfram.com/LeastSquaresFitting.html.

136
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.Dover, 1964.

137
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis.Springer, 1980.

138
P. Hillion, ``Numerical Integration on a Triangle,'' International Journal for Numerical Methods in Engineering, vol. 11, no. 5, pp. 797 - 815, 1977.

139
P. Hillion, ``Numerical Integration on a Tetrahedron,'' Calcolo, no. 18, pp. 117 - 130, 1981.

140
A. H. Stroud, Approximation Calculation of Multiple Integrals.Prentice Hall, 1971.

141
H. T. Rathod, K. V. Nagaraja, B. Venkatesudu, and N. L. Ramesh, ``Gauss Legendre Quadrature over a Triangle,'' Journal of Indian Institute of Science, vol. 84, no. 5, pp. 183 - 188, 2004.

142
C. Ueberhuber, Computer-Numerik 1.Springer, 1995.

143
``Numerical Algorithms Group,'' http://www.nag.com.

144
A. Grundmann and H. Moller, ``Invariant Integration Formulas for the $ n$ -Simplex by Combinatorial Methods,'' SIAM Journal on Numerical Analysis (SINUM), no. 15, pp. 282 - 290, 1978.

145
E. de Doncker, ``New Euler-Maclaurin Expansions and their Application to Quadrature over the $ s$ -Dimensional Simplex,'' Mathematics of Computation, no. 33, pp. 1003 - 1018, 1979.

146
M. Galassi, GNU Scientific Library Reference Manual, 2nd ed., http://www.gnu.org/software/gsl.


next up previous contents
Next: Own Publications Up: Dissertation Wilfried Wessner Previous: B.3 Volume Integral

Wilfried Wessner: Mesh Refinement Techniques for TCAD Tools