Next: Own Publications
Up: Dissertation Wilfried Wessner
Previous: B.3 Volume Integral
-
- 1
-
S. Selberherr, Analysis and Simulation of Semiconductor Devices.Springer, 1984.
- 2
-
J. F. Thompson, B. K. Soni, and N. P. Weatherill, Eds., Handbook of Grid
Generation.CRC Press, 1999.
- 3
-
S. J. Owen, ``Mesh Generation and Automated Simulation, Part I: Introduction
to Mesh Generation Algorithm Development.'' [Online]. Available:
http://www.imr.sandia.gov/papers/tumg4/owen-short-course.zip.
- 4
-
P. J. Frey and P.-L. George, Mesh Generation, 1st ed.Hermes, 2000.
- 5
-
``7
National Congress on Computational Mechanics,''
http://www.cfd.sandia.gov/USscowen.html.
- 6
-
``Mesh Generation and Automated Simulation,''
http://www.andrew.cmu.edu/user/sowen/usnccm03/short_course.html.
- 7
-
S. J. Owen, ``Non-Simplical Unstructured Mesh Generation,'' Dissertation,
Garnegie Mellon University, Pittsburgh, PA. U.S.A., 1999,
http://www.andrew.cmu.edu/user/sowen/abstracts/Ow644.html.
- 8
-
S. J. Owen, ``A Survey of Unstructured Mesh Generation Technology.'' [Online].
Available: http://www.andrew.cmu.edu/user/sowen/survey/index.html
- 9
-
O. Ushakova, Advances in Grid Generation.Nova Science Publisher, 2005.
- 10
-
S. Ivanenko, Selected Chapters on Grid Generation and
Applications.Dorodnicyn Computing
Center of the Russian Academy of Sciences, 2004.
- 11
-
S. J. Owen, ``Meshing Research Corner,''
http://www.andrew.cmu.edu/user/sowen/mesh.html.
- 12
-
R. Schneiders, ``Mesh Generation: Software,''
http://www-users.informatik.rwth-aachen.de/ roberts/software.html.
- 13
-
``TetrUSS,'' http://tetruss.larc.nasa.gov.
- 14
-
``TRUEGRID
, a Registered Trademark of XYZ
Scientific Applications, Inc,'' http://www.truegrid.com.
- 15
-
``ABAQUS, Inc.'' http://www.abaqus.com.
- 16
-
``ANSYS, Inc.'' http://www.ansys.com.
- 17
-
P. Fleischmann, ``Mesh Generation for Technology CAD in Three Dimensions,''
Dissertation, Technische Universität Wien, 2000,
http://www.iue.tuwien.ac.at/phd/fleischmann.
- 18
-
``Institute for Microlectronics,'' http://www.iue.tuwien.ac.at.
- 19
-
J. Schöberl, ``NETGEN - Automatic Mesh Generator.'' [Online]. Available:
http://www.hpfem.jku.at/netgen.
- 20
-
``ISE, Integrated Systems Engineering,'' http://www.ise.ch.
- 21
-
``SYNOPSYS,'' http://www.synopsys.com.
- 22
-
``COMSOL, Inc.'' http://www.comsol.com.
- 23
-
``SolidWorks Corporation,'' http://www.solidworks.com.
- 24
-
R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser, ``A High Performance Generic
Scientific Simulation Environmemt,'' in Proc. of the PARA Conference,
2006, p. 64.
- 25
-
U. Breymann, Die C++ Standard Template Library.Addison-Wesely, 1996.
- 26
-
G. Berti, ``Generic Software Components for Scientific Computing,''
Dissertation, Universität Dortmund, 2000.
- 27
-
CGAL User and Reference Manual: All Parts, 2004. [Online].
Available: http://www.cgal.org.
- 28
-
J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph
Library.Addison-Wesley, 2001.
- 29
-
``Boost C++ Libraries,'' http://www.boost.org.
- 30
-
T. Binder, ``Rigorous Integration of Semiconductor Process and Device
Simulators,'' Dissertation, Technische Universität Wien, 2002,
http://www.iue.tuwien.ac.at/phd/binder.
- 31
-
J. Cervenka, ``Three-Dimensional Mesh Generation for Device and Process
Simulation,'' Dissertation, Technische Universität Wien, 2004,
http://www.iue.tuwien.ac.at/phd/cervenka.
- 32
-
R. Bauer, ``Numerische Berechnung von Kapazitäten in Dreidimensionalen
Verdrahtungsstrukturen,'' Dissertation, Technische Universität Wien,
1994, http://www.iue.tuwien.ac.at/phd/bauer.
- 33
-
S. S. Skiena, The Algorithm Design Manual, 1st ed.Springer, 1997.
- 34
-
P.-L. George and H. Borouchaki, Delaunay Triangulation and
Meshing, 1st ed.Hermes, 1998.
- 35
-
I. Babuska and M. Suri, ``The P and H-P Versions of the Finite Element Method,
Basic Principles and Properties ,'' SIAM Review, vol. 36, no. 4, pp.
578 - 632, 1994.
- 36
-
E. Leitner and S. Selberherr, Simulation of Semiconductor Devices and
Processes.Springer, 1995, vol. 6,
ch. Three-Dimensional Grid Adaptation Using a Mixed-Element Decomposition
Method, pp. 464 - 467.
- 37
-
M.-C. Rivara and G. Iribarren, ``The 4-Triangles Longest-side Partition of
Triangles and Linear Refinement Algortithms,'' Mathematics of
Computation, vol. 65, no. 216, pp. 1485 - 1502, 1996.
- 38
-
A. Plaza and G. Carey, ``About Local Refinement of Tetrahedral Grids Based on
Local Bisection,'' in Proc. 5th International Meshing Roundtable
(IMR), 1996, pp. 123 - 136.
- 39
-
M.-C. Rivara, ``Mesh Refinement Processes Based on the Generalized Bisection
of Simplices,'' SIAM Journal on Numerical Analysis (SINUM),
vol. 21, no. 3, pp. 604 - 613, 1984.
- 40
-
D. N. Arnold, A. Mukherjee, and L. Pouly, ``Locally Adapted Tetrahedral Meshes
Using Bisection,'' SIAM Journal on Scientific Computing (SISC),
vol. 22, no. 2, pp. 431 - 448, 2000.
- 41
-
A. Liu and B. Joe, ``On the Shape of Tetrahedra from Bisection,''
Mathematics of Computation, vol. 63, no. 207, pp. 141 - 154, 1994.
- 42
-
C. Özturan, ``Worst Case Complexity of Parallel Triangular Mesh Refinement
by Longest Edge Bisection.'' [Online]. Available:
http://citeseer.ist.psu.edu/308417.html.
- 43
-
R. Kosik, P. Fleischmann, B. Haindl, P. Pietra, and S. Selberherr, ``On the
Interplay Between Meshing and Discretization in Three-Dimensional Diffusion
Simulation,'' IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, no. 11, pp. 1233 - 1240, 2000.
- 44
-
J. M. Maubach, ``Local Bisection Refinement for
-Simplicaial Grids
Generated by Reflection,'' SIAM Journal on Scientific Computing
(SISC), vol. 16, no. 1, pp. 210 - 227, 1995.
- 45
-
I. Kossaczký, ``A Recursive Approach to Local Mesh Refinement in Two or
Three Dimensions,'' Elsevier Journal of Computational and Applied
Mathematics, vol. 55, no. 3, pp. 275 - 288, 1994.
- 46
-
I. T. Jolliffe, Principal Component Analysis, 2nd ed.Springer, 2002.
- 47
-
L. I. Smith, ``A Tutorial on Principal Component Analysis.'' [Online].
Available:
http://kybele.psych.cornell.edu/ edelman/Psych-465-Spring-2003/PCA-tutorial.pdf.
- 48
-
S. Yamakawa and K. Shimada, ``High Quality Anisotropic Tetrahedral
Mesh Generation via Ellipsoidal Bubble Packing,'' in Proc.
9th International Meshing Roundtable (IMR), 2000, pp. 263 - 273.
- 49
-
A. Gray, Metrics on Surfaces, 2nd ed.CRC Press, 1997.
- 50
-
E. W. Weisstein, ``Metric,'' From MathWorld - A Wolfram Web Resource.
[Online]. Available: http://mathworld.wolfram.com/Metric.html.
- 51
-
L. Kelly, The Geometry of Metric and Linear Spaces.Springer, 1975.
- 52
-
T. Wischgoll and J. Meyer, Visualization and Processing of Tensor
Fields, ser. Mathematics+Visualization.Springer, 2006, ch. Locating Closed Hyperstreamlines in Second
Order Tensor Fields.
- 53
-
W. Benger and H. Hege, Visualization and Processing of Tensor Fields,
ser. Mathematics+Visualization.
Springer, 2006, ch. Strategies for Direct Visualization of Second-Rank
Tensor Fields.
- 54
-
M. A. Akivis and V. V. Goldberg, An Introduction to Linear Algebra and
Tensors.Dover, 1977.
- 55
-
J. C. Kolecki, ``An Introduction to Tensors for Students of Physics and
Engineering,'' NASA STI, NASA/TM-2002-211716, 2002, National
Aeronautics and Space Administration, Glenn Research Center. [Online].
Available:
http://www.grc.nasa.gov/WWW/K-12/Numbers/Math/documents/Tensors_TM2002211716.pdf.
- 56
-
G. Schmicki and P. Seegebrecht, Prozeßtechnologie.Springer, 1991.
- 57
-
S. Mauch, ``A Fast Algorithm for Computing the Closest Point and Distance
Transform,'' Caltech ASCI Technical Report 007, vol.
caltechASCI/2000.077, pp. 1 - 17, 2000, California Institute of
Technology.
- 58
-
A. Polyanin, Handbook of Linear Partial Differential Equations for
Engineers and Scientists.CRC Press,
2001.
- 59
-
M. Renardy and R. C. Rogers, An Introduction to Partial Differential
Equations, 2nd ed.Springer, 2004.
- 60
-
A. Prechtl, Vorlesungen über die Grundlagen der
Elektrotechnik.Springer, 1994,
vol. 1.
- 61
-
S. J. Ahn, Least Squares Orthogonal Distance Fitting of Curves and
Surfaces in Space, 1st ed.Springer,
2005.
- 62
-
C. Ueberhuber, Computer-Numerik 2.Springer, 1995.
- 63
-
``Linear Least Squares,'' From Wikipedia, The Free Encyclopedia. [Online].
Available: http://en.wikipedia.org/wiki/Linear_least_squares.
- 64
-
S. M. Sze, Ed., VLSI Technology, 2nd ed.McGraw-Hill, 1988.
- 65
-
J. M. Caywood, C. J. Huang, and Y. J. Chang, ``A Novel Nonvolatile Memory Cell
Suitable for Both Flash and Byte-Writable Applications,'' IEEE Trans.
Electron Devices, vol. 49, no. 5, pp. 802 - 807, 2002.
- 66
-
A. Hössinger, R. Minixhofer, and S. Selberherr, ``Full Three-Dimensional
Analysis of a Non-Volatile Memory Cell,'' in Proc. Simulation of
Semiconductor Processes and Devices, 2004, pp. 129 - 132.
- 67
-
DIOS-ISE, ISE TCAD Release 9.0, ISE Integrated System Engineering AG,
2003.
- 68
-
A. Hössinger, T. Binder, W. Pyka, and S. Selberherr, ``Advanced Hybrid
Cellular Based Approach for Three-Dimensional Etching and Deposition
Simulation,'' in Proc. Simulation of Semiconductor Processes and
Devices, 2001, pp. 424 - 427.
- 69
-
R. P. Feynman, The Feynman Lectures on Physics.Addison Wesley, 1971, vol. 1, ch. 43. Diffusion.
- 70
-
J. Crank, The Mathematics of Diffusion, 2nd ed.Clarendon Press, 1975.
- 71
-
``Diffusion,'' From Wikipedia, The Free Encyclopedia. [Online]. Available:
http://en.wikipedia.org/wiki/Diffusion.
- 72
-
O. Zienkiewicz, The Finite Element Method.McGraw-Hill, 1977.
- 73
-
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinemnet Techniques, 1st ed.
B. G. Teubner, 1996.
- 74
-
M. Ainsworth, J. Zhu, A. Craig, and O. Zienkiewicz, ``Analysis of the
Zienkiewicz-Zhu A-Posteriori Error Estimator in the Finite Element Method,''
International Journal for Numerical Methods in Engineering, vol. 28,
no. 9, pp. 2161 - 2174, 1989.
- 75
-
I. Babuska and T. Strouboulis, The Finite Element Method and its
Reliability.Oxford University Press,
2001.
- 76
-
I. Babuska and W. Rheinboldt, ``Error Estimates for Adaptive Finite Element
Computations,'' SIAM Journal on Numerical Analysis (SINUM), vol. 15,
no. 4, pp. 736 - 754, 1978.
- 77
-
R. Bank and R. Smith, ``Mesh Smoothing Using a Posteriori Error Estimates,''
SIAM Journal on Numerical Analysis (SINUM), vol. 34, no. 3, pp. 979 -
997, 1997.
- 78
-
R. Bank and J. Xu, ``Asymptotically Exact A Posteriori Error Estimators, Part
II: General Unstructured Grids,'' SIAM Journal on Numerical Analysis
(SINUM), vol. 41, no. 6, pp. 2313 - 2332, 2003.
- 79
-
R. H. Nochetto, ``Pointwise A Posteriori Error Estimates for Elliptic Problems
on Highly Graded Meshes,'' Mathematics of Computation, vol. 64, no.
209, pp. 1 - 22, 1995.
- 80
-
T. Blacker and T. Belychko, ``Superconvergent Patch Recovery with Equilibrium
and Conjoint Interpolant Enhancements,'' International Journal for
Numerical Methods in Engineering, vol. 37, no. 3, pp. 517 - 536, 1994.
- 81
-
L. Du and N. Yan, ``Gradient Recovery Type A Posteriori Error Estimate for
Finite Element Approximation on Non-Uniform Meshes,'' Advances in
Computational Mathematics, vol. 14, pp. 175 - 193, 2001.
- 82
-
E. Arai, D. Iida, H. Asai, Y. Ieki, H. Uchida, and M. Ichimura,
``Applicability of Phosphorus and Boron Diffusion Parameters Extracted from
Predeposition to Drive-in Diffusion for Bulk Silicon and
Silicon-on-Insulator,'' Japanese Journal of Applied Physics (JJAP),
vol. 42, no. 4A, pp. 1503 - 1510, 2003.
- 83
-
M. Mahadevan and R. Bradley, ``Simulations and Theory of Electromigration
Induced Slit Formation in Unpassivated Single-crystal Metal Lines.''
Physical Review B, vol. 59, no. 16, pp. 11 037 - 11 046, 1999.
- 84
-
H. Ceric, ``Numerical Techniques in Modern TCAD,'' Dissertation, Technische
Universität Wien, 2005, http://www.iue.tuwien.ac.at/phd/ceric.
- 85
-
J. Black, ``Electromigration-A Brief Survey and Some Recent Results,''
IEEE Trans. Electron Devices, vol. 16, no. 4, pp. 338 - 347, 1969.
- 86
-
P.-E. Zörner, This image is licensed under the Creative Commons
Attribution Share Alike License v. 2.0
http://creativecommons.org/licenses/by-sa/2.0/. [Online]. Available:
http://en.wikipedia.org/wiki/Image:Leiterbahn_ausfallort_elektromigration.jpg.
- 87
-
A. Buerke, H. Wendrock, and K. Wetzig, ``Study of Electromigration Damage in
Al Interconnect Lines inside a SEM,'' Crystal Research and
Technology, vol. 6-7, no. 35, pp. 721 - 730, 2000.
- 88
-
J. Bloomenthal, Ed., Introduction to Implicit Surfaces.Morgan Kaufman Publishers, 1997.
- 89
-
M. Barlie, T. Rowland, and E. W. Weisstein, ``Codimension,'' From MathWorld
- A Wolfram Web Resource. [Online]. Available:
http://mathworld.wolfram.com/Codimension.html.
- 90
-
G. E. Farin and D. Hansford, The Geometry Toolbox for Graphics and
Modeling.AK Peters, Ltd., 1998.
- 91
-
J. W. Harris and H. Stocker, Handbook of Mathematics and Computational
Science.Springer, 1998.
- 92
-
J. R. Munkres, Analysis on Manifolds.Perseus Books, 1990.
- 93
-
R. N. Bracewell, The Fourier Transform and its Applications,
3rd ed.McGraw-Hill, 1999.
- 94
-
S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces, 1st ed.Springer, 2002.
- 95
-
J. Spanier, An Atlas of Functions, 1st ed.Taylor and Francis, 1987.
- 96
-
E. W. Weisstein, ``Heaviside Step Function,'' From MathWorld - A Wolfram
Web Resource. [Online]. Available:
http://mathworld.wolfram.com/HeavisideStepFunction.html.
- 97
-
U. Weikard, ``Numerische Lösungen der Cahn-Hilliard-Gleichung und der
Cahn-Larche-Gleichung,'' Dissertation, Rheinische Friedrich-Wilhelms
Universität Bonn, 2002.
- 98
-
H. Ceric and S. Selberherr, ``An Adaptive Grid Approach for the Simulation of
Electromigration Induced Void Migration,'' IEICE Trans.
Electronics, vol. 3, no. E86-C, pp. 421 - 426, 2003.
- 99
-
H. Ceric and S. Selberherr, ``Simulative Prediction of the Resistance Change due to
Electromigration Induced Void Evolution,'' Microelectronics
Reliability, vol. 42, no. 9-11, pp. 1457 - 1460, 2002.
- 100
-
H. Pottmann and J. Wallner, Computational Line Geometry.Springer, 2001.
- 101
-
C. Johnson, Numerical Solution of Partial Differential Equations by the
Finite Element Method.Cambridge
University Press, 1987.
- 102
-
V. Sukharev, R. Choudhury, and C. W. Park, ``3-D Physically-Based
Electromigration Simulation in Copper - Low-K Interconnect,'' in Proc.
Simulation of Semiconductor Processes and Devices, G. Wachutka and
G. Schrag, Eds.Springer, 2004, pp.
335 - 338.
- 103
-
C. Geuzaine and J.-F. Remacle, ``Gmsh: A Three-Dimensional Finite Element Mesh
Generator.'' [Online]. Available: http://www.geuz.org/gmsh.
- 104
-
R. Sabelka and S. Selberherr, ``SAP -- A Program Package for
Three-Dimensional Interconnect Simulation,'' in Proc. International
Interconnect Technology Conference, 1998, pp. 250 - 252.
- 105
-
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor
Device Simulation.Springer, 1989.
- 106
-
T. Grasser, R. Kosik, C. Jungemann, H. Kosina, and S. Selberherr,
``Nonparabolic Macroscopic Transport Models for Device Simulation Based On
Bulk Monte Carlo Data,'' Journal of Applied Physics, vol. 97, no.
093710, pp. 1 - 12, 2005.
- 107
-
D. Ferry and C. Jacoboni, Quantum Transport in Semiconductors.Plenum, 1992.
- 108
-
G. A. Holton, Value-at-Risk: Theory and Practice.Academic Press, 2003, ch. 5 Monte Carlo Method.
- 109
-
R. Eckhardt, ``Stan Ulam, John von Neumann, and the Monte Carlo Method,''
Los Alamos Science, Special Issue, no. 15, pp. 131 - 137, 1987.
- 110
-
T. Giebel, Grundlagen der CMOS-Technologie.B. G. Teubner, 2002.
- 111
-
B. Sapoval and C. Hermann, Physics of Semiconductors, 2nd ed.Springer, 2003.
- 112
-
C. Jungemann and B. Meinzerhagen, Hierarchical Device Simulation, The
Monte-Carlo Perspective, S. Selberherr, Ed.Springer, 2003.
- 113
-
O. Madelung, Introduction to Solid State Theory.Springer, 1978.
- 114
-
M. Lundstrom, Fundamentals of Carrier Transport, 2nd ed.Campridge University Press, 2000.
- 115
-
M. V. Fischetti, ``Monte Carlo Simulation of Transport in Technologically
Significant Semiconductors of the Diamond and Zinc-Blende Structures - Part
I: Homogeneous Transport,'' IEEE Trans. Electron Devices, vol. 38,
pp. 634 - 649, 1991.
- 116
-
J. Singh, Physics of Semiconductors and their Heterostructures.McGraw-Hill, 1993.
- 117
-
B. Fischer, ``A Full-Band Monte Carlo Charge Transport Model for Nanoscale
Silicon Devices Including Strain,'' Dissertation, University Hannover,
1999.
- 118
-
G. Lehmann and M. Taut, ``On the Numerical Calculation of the Density of
States and Related Properties,'' Physica Status Solidi B, vol. 54,
pp. 469 - 477, 1972.
- 119
-
B. Czermak, ``Monte-Carlo Simulation des Stationären
Elektronentransportes in Polaren Halbleitern,'' Diplomarbeit, Technische
Universität Wien, 1993.
- 120
-
W. Harrison, Solid State Theory.
McGraw-Hill, 1970.
- 121
-
G. M. Dunn, G. J. Rees, J. P. R. David, S. A. Plimmer, and D. C. Herbert,
``Monte Carlo Simulation of Impact Ionization and Current Multiplication in
Short GaAs p
in
Diodes,'' Semiconductor Science and
Technology, vol. 12, pp. 111 - 120, 1997.
- 122
-
F. Bufler, Full-Band Monte Carlo Simulation of Electrons and Holes in
Strained Si and SiGe.Herbert Utz
Verlag, 1998.
- 123
-
C. Kittel, Elementary Statistical Physics.Dover, 1986.
- 124
-
N. V. Kampen, Stochastic Processes in Physics and Chemistry.Elsevier, 1992.
- 125
-
H. Weston, ``A Note on Standard Deviation.'' [Online]. Available:
http://mathcentral.uregina.ca/RR/database/RR.09.95/weston2.html.
- 126
-
V. Krishnan, Probability and Random Processes, ser. Wiley Survival
Guides in Engineering and Science.
Wiley, 2006.
- 127
-
R. C. Gonzalez and R. E. Woods, Digital Image Processing.Addison Wessley, 1992.
- 128
-
J. Weickert and H. Hagen, Eds., Visualization and Processing of Tensor
Fields, ser. Mathematics+Visualization.Springer, 2006.
- 129
-
G.-P. Bonneau, T. Ertl, and G. Nielson, Eds., Scientific Visualization:
The Visual Extraction of Knowledge from Data, ser.
Mathematics+Visualization.Springer,
2006.
- 130
-
G. Kindlmann and C.-F. Westin, ``Diffusion Tensor Visualization with Glyph
Packing,'' IEEE Trans. Visualization and Computer Graphics, vol. 12,
no. 5, pp. 1329 - 1336, 2006.
- 131
-
B. Cabral and C. Leedom, ``Imaging Vector Fields Using Line Integral
Convolution,'' in Proc. ACM SIGGRAPH 1993.Addison Weseley, 1993, pp. 263 - 270.
- 132
-
T. Delmarcelle and L. Hesselink, ``Visualizing Second-Order Tensor Fields with
Hyper Streamlines,'' IEEE Computer Graphics and Applications,
vol. 13, no. 4, pp. 25 - 33, 1993.
- 133
-
E. W. Weisstein, ``Euler Angles,'' from MathWorld - A Wolfram Web Resource.
[Online]. Available: http://mathworld.wolfram.com/EulerAngles.html.
- 134
-
M. Ledvij, ``Curve Fitting Made Easy,'' The Industrial Physicist,
vol. 9, no. 2, April/May 2003.
- 135
-
E. W. Weisstein, ``Least Squares Fitting,'' from MathWorld - A Wolfram Web
Resource. [Online]. Available:
http://mathworld.wolfram.com/LeastSquaresFitting.html.
- 136
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables.Dover, 1964.
- 137
-
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis.Springer, 1980.
- 138
-
P. Hillion, ``Numerical Integration on a Triangle,'' International
Journal for Numerical Methods in Engineering, vol. 11, no. 5, pp. 797 -
815, 1977.
- 139
-
P. Hillion, ``Numerical Integration on a Tetrahedron,'' Calcolo, no. 18,
pp. 117 - 130, 1981.
- 140
-
A. H. Stroud, Approximation Calculation of Multiple Integrals.Prentice Hall, 1971.
- 141
-
H. T. Rathod, K. V. Nagaraja, B. Venkatesudu, and N. L. Ramesh, ``Gauss
Legendre Quadrature over a Triangle,'' Journal of Indian Institute of
Science, vol. 84, no. 5, pp. 183 - 188, 2004.
- 142
-
C. Ueberhuber, Computer-Numerik 1.Springer, 1995.
- 143
-
``Numerical Algorithms Group,'' http://www.nag.com.
- 144
-
A. Grundmann and H. Moller, ``Invariant Integration Formulas for the
-Simplex by Combinatorial Methods,'' SIAM Journal on Numerical
Analysis (SINUM), no. 15, pp. 282 - 290, 1978.
- 145
-
E. de Doncker, ``New Euler-Maclaurin Expansions and their Application to
Quadrature over the
-Dimensional Simplex,'' Mathematics of
Computation, no. 33, pp. 1003 - 1018, 1979.
- 146
-
M. Galassi, GNU Scientific Library Reference Manual, 2nd ed.,
http://www.gnu.org/software/gsl.
Next: Own Publications
Up: Dissertation Wilfried Wessner
Previous: B.3 Volume Integral
Wilfried Wessner: Mesh Refinement Techniques for TCAD Tools