−Table of Contents
Mihail (Mixi) Nedjalkov
Biography
Mihail Nedjalkov, born in Sofia, Bulgaria received a master's degree in semiconductor physics at the Sofia University “Kl. Ohridski”, a PhD degree (1990), habilitation (2001) and D.Sc. degree (2011) at the Bulgarian Academy of Sciences (BAS). He is Associate Professor at the Institute of Information and Communication Technologies, BAS, and has held visiting research positions at the University of Modena (1994), University of Frankfurt (1998), Arizona State University (2004) and mainly at the Institute for Microelectronics, Technische Universität Wien. Nedjalkov has been supported by the following European and Austrian projects: EC Project NANOTCAD (2000-03), Österreichische Forschungsgemeinschaft MOEL 239 and 173 (2007-08), FWF (Austrian Science Fund) P-13333-TEC (1998-99) START (2005-06), and P21685 'Wigner-Boltzmann Particle Simulations' (2009-2014). He has served as a lecturer at the 2004 International School of Physics 'Enrico Fermi', Varenna, Italy. He is a member of the Italian Physical Society, APS and AMS reviewer. His research interests include physics and modeling of classical and quantum carrier transport in semiconductor materials, devices and nanostructures, collective phenomena, theory and application of stochastic methods.
Wigner Motivation
The Wigner function resembles many concepts and notions of the classical statistical mechanics. The analogy with the classical distribution function becomes even closer if a particle picture is associated to the Wigner formalism. General quantum phenomena may be modeled in terms of quasi-particles involving attributes such as drift, generation, sign, and annihilation on a phase space grid. These concepts provide both, a heuristic picture of quantum evolution numerical feasibility of the developed Monte Carlo method. The particle model is examined in an ultimate regime of a constant electric force, where classical and quantum dynamics become equivalent. It is interesting to see how the usual Newtonian motion in the momentum space of an initial peak of particles is resembled by processes of annihilation and generation of quasi-particles, which reside on a momentum grid and can not gain or lose momentum. The first applications to carrier transport in multidimensional structures are already a fact showing promising practical aspects of the approach. The strong formal similarity between the Wigner generation and annihilation of signed particles and the physical processes of absorption and emission of phonons by the lattice motivates the extension of the approach to phonon transport.
Wigner Research
(selection)
- Mihail (Mixi) Nedjalkov, Josef Weinbub, Mauro Ballicchia, Siegfried Selberherr, Ivan Dimov, and David K. Ferry, Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform, Phys. Rev. B 99, 014423 (2019)
- M. Benam, Mihail (Mixi) Nedjalkov, Siegfried Selberherr, A Wigner Potential Decomposition in the Signed-Particle Monte Carlo Approach, in: Numerical Methods and Applications, Lecture Notes in Computer Science 11189, 263 (2019)
- Mauro Ballicchia, David K. Ferry, Mihail (Mixi) Nedjalkov, Josef Weinbub, Investigating Quantum Coherence by Negative Excursions of the Wigner Quasi-Distribution, Appl. Sci. 9, 1344 (2019)
- Josef Weinbub, Mauro Ballicchia, and Mihail (Mixi) Nedjalkov, Electron Interference in a Double‐Dopant Potential Structure, Phys. Stat. Sol. RRL 12, 1800111 (2018)
- Mauro Ballicchia, Josef Weinbub, Mihail (Mixi) Nedjalkov, Electron Evolution Around a Repulsive Dopant in a Quantum Wire: Coherence Effects, Nanoscale 10, 23037 (2018)
- David K. Ferry and Mihail (Mixi) Nedjalkov, The Wigner Function in Science and Technology (IOP Publishing, 2018)
- Mihail (Mixi) Nedjalkov, Paul Ellinghaus, Josef Weinbub, Toufik Sadi, Asen Asenov, Ivan Dimov, and Siegfried Selberherr, Stochastic Analysis of Surface Roughness Models in Quantum Wires, Comp. Phys. Commun. 228, 30 (2018)
- Paul Ellinghaus, Josef Weinbub, Mihail (Mixi) Nedjalkov and Siegfried Selberherr, Analysis of Lense-Governed Wigner Signed Particle Quantum Dynamics, Phys. Stat. Sol. RRL 11, 1700102 (2017)
- Ivan Dimov, Mihail (Mixi) Nedjalkov, J.M. Sellier, Siegfried Selberherr, Neumann Series Analysis of the Wigner Equation Solution, in: Progress in Industrial Mathematics, The European Consortium for Mathematics in Industry 22, 701 (2016)
- Mihail (Mixi) Nedjalkov, Josef Weinbub, Paul Ellinghaus, and Siegfried Selberherr, The Wigner Equation in the Presence of Electromagnetic Potentials, J. Comp. Electron. 14, 888 (2015)
- Josef Weinbub, Paul Ellinghaus, Mihail (Mixi) Nedjalkov, Domain Decomposition Strategies for the Two-Dimensional Wigner Monte Carlo Method, J. Comp. Electron. 14, 922 (2015)
- Paul Ellinghaus, Josef Weinbub, Mihail (Mixi) Nedjalkov, Siegfried Selberherr, and Ivan Dimov, Distributed-Memory Parallelization of the Wigner Monte Carlo Method Using Spatial Domain Decomposition, J. Comp. Electron. 14, 151 (2015)
- J.M. Sellier, Mihail (Mixi) Nedjalkov, Ivan Dimov, and Siegfried Selberherr, A Comparison of Approaches for the Solution of the Wigner Equation, Math. Comp. Sim. 107, 108 (2015)
- Ivan Dimov, Mihail (Mixi) Nedjalkov, J.M. Sellier, and Siegfried Selberherr, Boundary Conditions and the Wigner Equation Solution, J. Comp. Electron. 14, 859 (2015)
- Paul Ellinghaus, Mihail (Mixi) Nedjalkov, and Siegfried Selberherr, Optimized Particle Regeneration Scheme for the Wigner Monte Carlo Method, in: Numerical Methods and Applications, Lecture Notes in Computer Science 8962, 27 (2015)
- Johann Cervenka, Paul Ellinghaus, Mihail (Mixi) Nedjalkov, Deterministic Solution of the Discrete Wigner Equation, in: Numerical Methods and Applications, Lecture Notes in Computer Science 8962, 149 (2015
- Johann Cervenka, Paul Ellinghaus, Mihail (Mixi) Nedjalkov, Erasmus Langer, Optimization of the Deterministic Solution of the Discrete Wigner Equation, in: large Scale Scientific Computing, Lecture Notes in Computer Science 9374, 269 (2015)
- J.M. Sellier, S. Amoroso, Mihail (Mixi) Nedjalkov, Siegfried Selberherr, Asen Asenov, and Ivan Dimov, Electron Dynamics in Nanoscale Transistors by Means of Wigner and Boltzmann Approaches, Physica A 398, 194 (2014)
- J.M. Sellier, Mihail (Mixi) Nedjalkov, Ivan Dimov, and Siegfried Selberherr, The Role of Annihilation in a Wigner Monte Carlo Approach, in: Large-Scale Scientific Computing, Lecture Notes in Computer Science 8353, 186 (2014)
- J.M. Sellier, Mihail (Mixi) Nedjalkov, Ivan Dimov, and Siegfried Selberherr, A Benchmark Study of the Wigner Monte Carlo Method, Mon. Carl. Meth. Appl. 20, 43 (2014)
- Mihail (Mixi) Nedjalkov, P. Schwaha, Siegfried Selberherr, J.M. Sellier, and Dragica Vasileska, Wigner Quasi-Particle Attributes - An Asymptotic Perspective, Appl. Phys. Lett. 102, 163113 (2013)
- P. Schwaha, Damien Querlioz, Philippe Dollfus, J. Saint-Martin, Mihail (Mixi) Nedjalkov, and Siegfried Selberherr, Decoherence Effects in the Wigner Function Formalism, J. Comput. Electron. 12, 388 (2013)
- Mihail (Mixi) Nedjalkov, Siegfried Selberherr, David K. Ferry, Dragica Vasileska, Philippe Dollfus, Damien Querlioz, Ivan Dimov, and P. Schwaha, Physical Scales in the Wigner-Boltzmann Equation, Ann. Phys. 328, 220 (2012)
- Mihail (Mixi) Nedjalkov, Hans Kosina, and Philipp Schwaha, Device Modeling in the Wigner Picture, J. Comp. Electron. 9, 218 (2010)
- Hans Kosina, Mihail (Mixi) Nedjalkov, and Siegfried Selberherr, Solution of the Space-dependent Wigner Equation Using a Particle Model, Mon. Carl. Meth. Appl. 10, 359 (2004)
- Mihail (Mixi) Nedjalkov, E. Atanassov, Hans Kosina, and Siegfried Selberherr, Operator-Split Method for Variance Reduction in Stochastic Solutions of the Wigner Equation, Mon. Carl. Meth. Appl. 10, 461 (2004)
- Mihail (Mixi) Nedjalkov, Hans Kosina, Siegfried Selberherr, Christian Ringhofer, and David K. Ferry, Unified Particle Approach to Wigner-Boltzmann Transport in Small Semiconductor Devices, Phys. Rev. B 70, 115319 (2004)
- Mihail (Mixi) Nedjalkov, Hans Kosina, E. Ungersboeck, and Siegfried Selberherr, A Quasi-Particle Model of the Electron-Wigner Potential Interaction, Semicon. Sci. Techn. 19, 226 (2004)
- Mihail (Mixi) Nedjalkov, Hans Kosina, and Siegfried Selberherr, Stochastic Interpretation of the Wigner Transport in Nanostructures, Microelectron. J. 34, 443 (2003)
- Mihail (Mixi) Nedjalkov, Hans Kosina, Robert Kosik, and Siegfried Selberherr, Space Dependent Wigner Equation Including Phonon Interaction, J. Comput. Electron. 1, 27 (2002)
- Mihail (Mixi) Nedjalkov, Hans Kosina, Robert Kosik, and Siegfried Selberherr, A Wigner Equation with Quantum Electron-Phonon Interaction, Microelectron. Engin. 63, 199 (2002)