Bibliography

[1]   M. Masuduzzaman, A. Islam, and M. Alam, “Exploring the Capability of Multifrequency Charge Pumping in Resolving Location and Energy Levels of Traps Within Dielectric,” IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3421–3431, 2008.

[2]   W. Gös and T. Grasser, “Charging and Discharging of Oxide Defects in Reliability Issues,” in IEEE International Integrated Reliability Workshop Final Report, pp. 27–32, 2007.

[3]   A. Asenov, “Random Dopant Induced Threshold Voltage Lowering and Fluctuations in sub-0.1μm MOSFET’s: A 3-D ”atomistic” Simulation Study,” IEEE Transactions on Electron Devices, vol. 45, no. 12, pp. 2505–2513, 1998.

[4]   M. Bina, O. Triebl, B. Schwarz, M. Karner, B. Kaczer, and T. Grasser, “Simulation of Reliability on Nanoscale Devices,” pp. 109–112, 2012.

[5]   A. Wettstein, O. Penzin, and E. Lyumkis, “Integration of the Density Gradient Model Into a General Purpose Device Simulator,” VLSI Design, vol. 15, no. 4, pp. 751–759, 2002.

[6]   N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “Role of Long-Range and Short-Range Coulomb Potentials in Threshold Characteristics Under Discrete Dopants in sub-0.1μm Si-MOSFETs,” in IEEE International Electron Devices Meeting (IEDM), pp. 275–278, IEEE, 2000.

[7]   C. Jungemann, C. Nguyen, B. Neinhüs, S. Decker, and B. Meinerzhagen, “Improved Modified Local Density Approximation for Modeling of size Quantization in NMOSFETs,” in Proceedings of the International Conference on Modeling and Simulation of Microsystems, 2001.

[8]   D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.

[9]   A. Wettstein, Quantum Effects in MOS Devices. PhD thesis, ETH Zürich, 2000.

[10]   M. Born and R. Oppenheimer, “Zur Quantentheorie der Moleküle,” Annalen der Physik, vol. 389, pp. 457–484, 1927.

[11]   J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, 2001.

[12]   O. Madelung, Introduction to Solid-State Theory. Springer Series in Solid-State Sciences, Springer, 1996.

[13]   H. Kosina, Simulation des Ladungstransportes in elektronischen Bauelementen mit Hilfe der Monte-Carlo-Methode. PhD thesis, TU Wien, 1992.

[14]   C. Kittel, Introduction to Solid State Physics, 7th Edition. Wiley India Pvt. Limited, 2007.

[15]   F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Zeitschrift für Physik, vol. 52, no. 7-8, pp. 555–600, 1929.

[16]   L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity, vol. 960. Academic Press New York, 1960.

[17]   L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Dover Publications, 2003.

[18]   O. Madelung, U. Rössler, and M. Schulz, eds., vol. 41A1b of Landolt-Börnstein - Group III Condensed Matter, ch. Silicon (Si), band structure.

[19]   J. R. Chelikowsky and M. L. Cohen, “Nonlocal Pseudopotential Calculations for the Electronic Structure of eleven Diamond and Zinc-Blende Semiconductors,” Physical Review B, vol. 14, pp. 556–582, 1976.

[20]   C. Herring and E. Vogt, “Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering,” Physical Review, vol. 101, pp. 944–661, 1955.

[21]   E. O. Kane, “Band Structure of Indium Antimonide,” Journal of Physics and Chemistry of Solids, vol. 1, no. 4, pp. 249 – 261, 1957.

[22]   M. Lundstrom, Fundamentals of Carrier Transport. Cambridge University Press, 2009.

[23]   C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Computational Microelectronics, Springer, 1989.

[24]   C. Jacoboni and L. Reggiani, “The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials,” Reviews of Modern Physics, vol. 55, pp. 645–705, 1983.

[25]    C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation: The Monte-Carlo Perspective. Computational Microelectronics, Springer, 2003.

[26]   H. Brooks and C. Herring, “Scattering by Ionized Impurities in Semiconductors,” Physical Review, vol. 83, no. 4, p. 879, 1951.

[27]   E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in Silicon,” Applied Physics Letters, vol. 62, no. 25, pp. 3339–3341, 1993.

[28]   P. Lugli and D. Ferry, “Effect of Electron-Electron and Electron-Plasmon Interactions on Hot Carrier Transport in Semiconductors,” Physica B+C, vol. 129, no. 1, pp. 532–536, 1985.

[29]   T. Grasser, “Stochastic Charge Trapping in Oxides From Random Telegraph Noise to Bias Temperature Instabilities,” Microelectronics Reliability, vol. 52, no. 1, pp. 39–70, 2012.

[30]   A. Piazza, C. Korman, and A. Jaradeh, “A Physics-based Semiconductor Noise Model Suitable for Efficient Numerical Implementation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 12, pp. 1730–1740, 1999.

[31]   W. Shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons,” Physical Review, vol. 87, pp. 835–842, 1952.

[32]   R. Stratton, “Diffusion of Hot and Cold Electrons in Semiconductor Barriers,” Physical Review, vol. 126, pp. 2002–2014, 1962.

[33]   K. Blotekjaer, “High-Frequency Conductivity, Carrier Waves, and Acoustic Amplification in Drifted Semiconductor Plasmas,” Ericsson Technics, vol. 2, pp. 126–183, 1966.

[34]   M. Gritsch, Numerical Modeling of Silicon-on-Insulator MOSFETs. PhD thesis, TU Wien, 2002.

[35]   S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer-Verlag, 1984.

[36]   C. Jungemann and B. Meinerzhagen, “On the High Frequency Limit of the Impedance Field Method for Si,” in International Conference on Noise in Physical Systems and 1/f Fluctuations, vol. 780, pp. 799–802, 2005.

[37]   J. Ruch, “Electron Dynamics in Short Channel Field-Effect Transistors,” IEEE Transactions on Electron Devices, vol. 19, no. 5, pp. 652–654, 1972.

[38]   T. Grasser and S. Selberherr, “Limitations of hydrodynamic and energy-transport models,” in Proceedings of the International Society for Optical Engineering, vol. 1, pp. 584–591, 2002.

[39]   T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, “Using Six Moments of Boltzmann’s Transport Equation for Device Simulation,” Journal of Applied Physics, vol. 90, no. 5, pp. 2389–2396, 2001.

[40]   J. Hammersley and D. Handscomb, Monte Carlo Methods. Methuen’s monographs on applied probability and statistics, Methuen, 1964.

[41]   H. Kosina, M. Nedjalkov, and S. Selberherr, “Theory of the Monte Carlo Method for Semiconductor Device Simulation,” IEEE Transactions on Electron Devices, vol. 47, no. 10, pp. 1898–1908, 2000.

[42]   P. A. Childs and C. C. C. Leung, “A onedimensional Solution of the Boltzmann Transport Equation including Electron-Electron Interactions,” Journal of Applied Physics, vol. 79, no. 1, pp. 222–227, 1996.

[43]   A. Zaka, P. Palestri, Q. Rafhay, R. Clerc, M. Iellina, D. Rideau, C. Tavernier, G. Pananakakis, H. Jaouen, and L. Selmi, “An Efficient Nonlocal Hot Electron Model Accounting for Electron-Electron Scattering,” IEEE Transactions on Electron Devices, vol. 59, pp. 983–993, April 2012.

[44]   B. Meinerzhagen, A. Pham, S.-M. Hong, and C. Jungemann, “Solving Boltzmann Transport Equation without Monte-Carlo Algorithms - New Methods for Industrial TCAD Applications,” in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 293–296, 2010.

[45]   C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo Device Simulation of a Si/SiGe-HBT with a Realistic Ge Profile,” IEICE Transactions on Electronics, vol. 83, no. 8, pp. 1228–1234, 2000.

[46]   M. Bina, K. Rupp, S. Tyaginov, O. Triebl, and T. Grasser, “Modeling of Hot Carrier Degradation using a Spherical Harmonics Expansion of the bipolar Boltzmann Transport Equation,” in IEEE International Electron Devices Meeting (IEDM), pp. 30.5.1–30.5.4, 2012.

[47]   S. Hong, A. Pham, and C. Jungemann, Deterministic Solvers for the Boltzmann Transport Equation. Springer, 2011.

[48]   J. Seonghoon, S. Hong, and C. Jungemann, “An Efficient Approach to Include Full-Band Effects in Deterministic Boltzmann Equation Solver Based on High-Order Spherical Harmonics Expansion,” IEEE Transactions on Electron Devices, vol. 58, no. 5, pp. 1287–1294, 2011.

[49]   D. Ruić and C. Jungemann, “A self-consistent Solution of the Poisson, Schrödinger and Boltzmann Equations by a Full Newton-Raphson Approach for Nanoscale Semiconductor Devices,” in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013.

[50]   R. Oberhuber, G. Zandler, and P. Vogl, “Subband Structure and Mobility of Two-Dimensional Holes in Strained Si/SiGe MOSFETs,” Physical Review B, vol. 58, no. 15, p. 9941, 1998.

[51]   O. Baumgartner, Z. Stanojevic, K. Schnass, M. Karner, and H. Kosina, “VSP–A quantum-electronic Simulation Framework,” Journal of Computational Electronics, vol. 12, no. 4, pp. 701–721, 2013.

[52]   A. Gehring, Simulation of Tunneling in Semiconductor Devices. PhD thesis, TU Wien, 2003.

[53]   M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, “Modeling of Nanoscale Devices,” Proceedings of the IEEE, vol. 96, no. 9, pp. 1511–1550, 2008.

[54]   S. Datta, “The Non-Equilibrium Green’s Function (NEGF) Formalism: An Elementary Introduction,” in IEEE International Electron Devices Meeting (IEDM), pp. 703–706, 2002.

[55]   L. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems. Frontiers in Physics, W.A. Benjamin, 1962.

[56]   O. Baumgartner, Simulation of Quantum Transport Using the Non-Equilibrium Green’s Functions Formalism. PhD thesis, TU Wien, 2006.

[57]   K. Rupp, T. Grasser, and A. Jüngel, “On the Feasibility of Spherical Harmonics Expansions of the Boltzmann Transport Equation for Three-Dimensional Device Geometries,” in IEEE International Electron Devices Meeting (IEDM), 2011.

[58]   M. Vecchi and M. Rudan, “Modeling Electron and Hole Transport with Full-band Structure Effects by means of the Spherical-Harmonics Expansion of the BTE,” IEEE Transactions on Electron Devices, vol. 45, no. 1, pp. 230–238, 1998.

[59]   S.-M. Hong, G. Matz, and C. Jungemann, “A Deterministic Boltzmann Equation Solver Based on a Higher Order Spherical Harmonics Expansion with Full-Band Effects,” IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2390–2397, 2010.

[60]   C. Jungemann, A. Pham, S. Hong, and B. Meinerzhagen, “Deterministic Simulation of 3D and quasi-2D Electron and Hole Systems in SiGe Devices,” in Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 318–321, 2012.

[61]   K. Rupp, P. W. Lagger, T. Grasser, and A. Jüngel, “Inclusion of Carrier-Carrier-Scattering Into Arbitrary-Order Spherical Harmonics Expansions of the Boltzmann Transport Equation,” in International Workshop on Computational Electronics, pp. 1–4, 2012.

[62]   K. Rupp, C. Jungemann, M. Bina, A. Jungel, and T. Grasser, “Bipolar Spherical Harmonics Expansions of the Boltzmann Transport Equation,” in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 19–22, 2012.

[63]   C.-K. Lin, N. Goldsman, Z. Han, I. Mayergoyz, S. Yu, M. Stettler, and S. Singh, “Frequency Domain Analysis of the Distribution Function by Small Signal Solution of the Boltzmann and Poisson Equations,” in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 39–42, 1999.

[64]   N. Goldsman, C. Lin, Z. Han, and C. Huang, “Advances in the Spherical Harmonic-Boltzmann-Wigner Approach to Device Simulation,” Superlattices and Microstructures, vol. 27, pp. 159–175, 2000.

[65]   “ViennaSHE Device Simulator.” http://viennashe.sourceforge.net/.

[66]   S.-M. Hong and C. Jungemann, “A Fully Coupled Scheme for a Boltzmann-Poisson Equation Solver Based on a Spherical Harmonics Expansion,” Journal of Computational Electronics, vol. 8, pp. 225–241, 2009.

[67]   K. Rupp, Deterministic Numerical Solution of the Boltzmann Transport Equation. PhD thesis, TU Wien, 2011.

[68]   C. Jungemann, A. Pham, B. Meinerzhagen, C. Ringhofer, and M. Bollhofer, “Stable Discretization of the Boltzmann Equation based on Spherical Harmonics, Box Integration, and a Maximum Entropy Dissipation Principle,” Journal of Applied Physics, vol. 100, no. 2, pp. 024502–024502, 2006.

[69]   A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh, “Two-dimensional MOSFET Simulation by means of a Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport Equation,” Solid-State Electronics , vol. 36, no. 4, pp. 575 – 581, 1993.

[70]   C. Ringhofer, “Numerical Methods for the Semiconductor Boltzmann Equation Based on Spherical Harmonics Expansions and Entropy Discretizations,” Transport Theory and Statistical Physics, vol. 31(4-6), pp. 431–452, 2002.

[71]   K. Rupp, A. Jüngel, and T. Grasser, “Matrix Compression for Spherical Harmonics Expansions of the Boltzmann Transport Equation for Semiconductors,” Journal of Computational Physics, vol. 229, no. 23, pp. 8750–8765, 2010.

[72]   S.-M. Hong and C. Jungemann, “Inclusion of the Pauli Principle in a Deterministic Boltzmann Equation Solver Based on a Spherical Harmonics Expansion,” Journal of Computational Electronics, vol. 9, no. 3-4, pp. 153–159, 2010.

[73]   K. Levenberg, “A Method for the Solution of Certain Problems in Least Squares,” Quarterly Applied Mathematics, vol. 2, pp. 164–168, 1944.

[74]   D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” Journal of the Society for Industrial & Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[75]   C. Lin, N. Goldsman, I. D. Mayergoyz, and C. Chang, “A Transient Solution of the Boltzmann Equation Exposes Energy Overshoot in Semiconductor Devices,” Journal of Applied Physics, vol. 86, no. 1, pp. 468–475, 1999.

[76]   G. Dimarco, L. Pareschi, and V. Rispoli, “Implicit-Explicit Runge-Kutta schemes for the Boltzmann-Poisson System for Semiconductors,” ArXiv e-prints, May 2013.

[77]   J. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley, 2008.

[78]   J. Strikwerda, Finite Difference Schemes and Partial Differential Equations. Society for Industrial and Applied Mathematics, 2007.

[79]   W. Shockley, G. L. Pearson, and J. R. Haynes, “Hole Injection in Germanium - Quantitative Studies and Filamentary Transistors,” Bell System Technical Journal, vol. 28, pp. 344–366, 1949.

[80]   G. Paasch and H. Übensee, “A Modified Local Density Approximation. Electron Density in Inversion Layers,” Physica Status Solidi (B), vol. 113, no. 1, pp. 165–178, 1982.

[81]   M. G. Ancona and G. J. Iafrate, “Quantum Correction to the Equation of State of an Electron Gas in a Semiconductor,” Physical Review B, vol. 39, pp. 9536–9540, 1989.

[82]   A. Wettstein, A. Schenk, and W. Fichtner, “Quantum Device-Simulation with the Density-Gradient Model on Unstructured Grids,” vol. 48, no. 2, pp. 279–284, 2001.

[83]   A. Wettstein, A. Schenk, and W. Fichtner, “Quantum Device-Simulation with the Density-Gradient Model on Unstructured Grids,” vol. 15, no. 4, p. 751759, 2002.

[84]   H. Tsuchiya, B. Fischer, and K. Hess, “A Full-Band Monte Carlo Model for Silicon Nanoscale Devices with a Quantum Mechanical Correction of the Potential,” in IEEE International Electron Devices Meeting (IEDM), pp. 283–286, Dec 2000.

[85]   S. Odanaka, “Multidimensional Discretization of the Stationary Quantum Drift-Diffusion Model for Ultrasmall MOSFET Structures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 6, pp. 837–842, 2004.

[86]   M. G. Ancona and B. A. Biegel, “Nonlinear Discretization Scheme for the Density-Gradient Equations,” in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 196–199, 2000.

[87]   S. Odanaka, “A High-Resolution Method for Quantum Confinement Transport Simulations in MOSFETs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 1, pp. 80–85, 2007.

[88]   M. G. Ancona, “Finite-Difference Schemes for the Density-Gradient Equations,” Journal of Computational Electronics, vol. 1, no. 3, pp. 435–443, 2002.

[89]   T.-W. Tang, X. Wang, and Y. Li, “Discretization Scheme for the Density-Gradient Equation and Effect of Boundary Conditions,” Journal of Computational Electronics, vol. 1, no. 3, pp. 389–393, 2002.

[90]   B. Schwarz, Simulation of Random Dopant Fluctuations with a Quantum-Corrected Drift-Diffusion Model. PhD thesis, TU Wien, 2012.

[91]   T. Höhr, A. Schenk, A. Wettstein, and W. Fichtner, “On Density-Gradient Modeling of Tunneling through Insulators,” IEICE Transactions on Electronics, vol. 86, no. 3, pp. 379–384, 2003.

[92]   N. Sano and M. Tomizawa, “Random Dopant Model for Three-Dimensional Drift-Diffusion Simulations in Metal-Oxide-Semiconductor Field-Effect-Transistors,” Applied Physics Letters, vol. 79, no. 14, pp. 2267–2269, 2001.

[93]   A. Asenov, G. Slavcheva, A. R. Brown, J. H. Davies, and S. Saini, “Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in sub-100nm MOSFETs due to Quantum Effects: a 3-D Density-Gradient Simulation Study,” IEEE Transactions on Electron Devices, vol. 48, no. 4, pp. 722–729, 2001.

[94]   A. R. Brown, N. M. Idris, J. R. Watling, and A. Asenov, “Impact of Metal Gate Granularity on Threshold Voltage Variability: A full-scale three-dimensional Statistical Simulation Study,” IEEE Electron Device Letters, vol. 31, no. 11, pp. 1199–1201, 2010.

[95]   T. Grasser, Bias Temperature Instability for Devices and Circuits. Springer London, Limited, 2013.

[96]   H.-S. Wong and Y. Taur, “Three-dimensional ”atomistic” Simulation of Discrete Random Dopant Distribution Effects in sub-0.1μm MOSFET’s,” in IEEE International Electron Devices Meeting (IEDM), pp. 705–708, 1993.

[97]   E. Conwell and V. F. Weisskopf, “Theory of Impurity Scattering in Semiconductors,” Physical Review, vol. 77, no. 3, p. 388, 1950.

[98]   C. Alexander, A. R. Brown, J. R. Watling, and A. Asenov, “Impact of Scattering in ’atomistic’ Device Simulations,” Solid-state Electronics, vol. 49, no. 5, pp. 733–739, 2005.

[99]   A. Asenov and S. Saini, “Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-μm mosfet’s with epitaxial and δ-doped channels,” IEEE Transactions on Electron Devices, vol. 46, no. 8, pp. 1718–1724, 1999.

[100]   B. Kaczer, S. Mahato, V. de Almeida Camargo, M. Toledano-Luque, P. Roussel, T. Grasser, F. Catthoor, P. Dobrovolny, P. Zuber, G. Wirth, and G. Groeseneken, “Atomistic approach to variability of bias–temperature instability in circuit simulations,” in IEEE International Reliability Physics Symposium (IRPS), pp. XT.3.1–XT.3.5, 2011.

[101]   B. Kaczer, P. Roussel, T. Grasser, and G. Groeseneken, “Statistics of Multiple Trapped Charges in the Gate Oxide of Deeply Scaled MOSFET Devices-Application to NBTI,” IEEE Electron Device Letters, vol. 31, no. 5, pp. 411–413, 2010.

[102]   T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, M. Toledano-Luque, and M. Nelhiebel, “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps,” in IEEE Transactions on Electron Devices, vol. 58, pp. 3652–3666, 2011.

[103]   M. F. Bukhori, S. Roy, and A. Asenov, “Simulation of statistical aspects of charge trapping and related degradation in bulk mosfets in the presence of random discrete dopants,” IEEE Transactions on Electron Devices, vol. 57, no. 4, pp. 795–803, 2010.

[104]   A. Mauri, N. Castellani, C. Compagnoni, A. Ghetti, P. Cappelletti, A. Spinelli, and A. Lacaita, “Impact of atomistic doping and 3D electrostatics on the variability of RTN time constants in flash memories,” in IEEE International Electron Devices Meeting (IEDM), 2011.

[105]   T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, “Time-Dependent Defect Spectroscopy for Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors,” Physical Review B, vol. 82, no. 24, p. 245318, 2010.

[106]   S. Markov, S. M. Amoroso, L. Gerrer, F. Adamu-Lema, and A. Asenov, “Statistical interactions of multiple oxide traps under bti stress of nanoscale mosfets,” IEEE Electron Device Letters, vol. 34, no. 5, pp. 686–688, 2013.

[107]   A. Asenov, A. R. Brown, J. H. Davies, and S. Saini, “Hierarchical Approach to ‘atomistic’ 3-D MOSFET Simulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 11, pp. 1558–1565, 1999.

[108]   C. Alexander, G. Roy, and A. Asenov, “Random-Dopant-Induced Drain Current Variation in Nano-MOSFETs: A Three-Dimensional Self-Consistent Monte Carlo Simulation Study Using ”Ab Initio” Ionized Impurity Scattering,” IEEE Transactions on Electron Devices, vol. 55, no. 11, pp. 3251–3258, 2008.

[109]   A. Cathignol, B. Cheng, D. Chanemougame, A. Brown, K. Rochereau, G. Ghibaudo, and A. Asenov, “Quantitative Evaluation of Statistical Variability Sources in a 45-nm Technological Node LP N-MOSFET,” IEEE Electron Device Letters, vol. 29, no. 6, pp. 609–611, 2008.

[110]   C. Millar, D. Reid, G. Roy, S. Roy, and A. Asenov, “Accurate Statistical Description of Random Dopant-Induced Threshold Voltage Variability,” IEEE Electron Device Letters, vol. 29, no. 8, pp. 946–948, 2008.

[111]   T. Grasser, P.-J. Wagner, P. Hehenberger, W. Gös, and B. Kaczer, “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 526–535, 2008.

[112]   F. Schanovsky, Atomistic Modeling in the Context of the Bias Temperature Instability. PhD thesis, TU Wien, 2013.

[113]   W. Gös, Hole Trapping and the Negative Bias Temperature Instability. PhD thesis, TU Wien, 2011.

[114]   D. K. Schroder, “Negative Bias Temperature Instability: What do we understand?,” Microelectronics Reliability, vol. 47, no. 6, pp. 841–852, 2007.

[115]   T. Grasser, W. Gös, V. Sverdlov, and B. Kaczer, “The Universality of NBTI Relaxation and its Implications for Modeling and Characterization,” in IEEE International Reliability Physics Symposium Proceedings, pp. 268–280, 2007.

[116]   H. Reisinger, U. Brunner, W. Heinrigs, W. Gustin, and C. Schlunder, “A Comparison of Fast Methods for Measuring NBTI Degradation,” IEEE Transactions on Device and Materials Reliability, vol. 7, no. 4, pp. 531–539, 2007.

[117]   H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, and C. Schlunder, “Analysis of NBTI Degradation- and Recovery-Behavior based on Ultra fast VT-Measurements,” in IEEE International Reliability Physics Symposium Proceedings, pp. 448–453, 2006.

[118]   T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, M. Toledano-Luque, and M. Nelhiebel, “The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps,” IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 3652–3666, 2011.

[119]   T. Aichinger, On the Role of Hydrogen in Silicon Device Degradation and Metalization Processing. PhD thesis, TU Wien, 2010.

[120]   G. Pobegen, Degradation of electrical parameters of power semiconductor devices - process influences and modeling. PhD thesis, TU Wien, 2013.

[121]   T. Aichinger, M. Nelhiebel, and T. Grasser, “On the Temperature Dependence of NBTI Recovery,” Microelectronics Reliability, vol. 48, pp. 1178–1184, 2008.

[122]   B. Kaczer, T. Grasser, P. Roussel, J. Martin-Martinez, R. O’Connor, B. O’Sullivan, and G. Groeseneken, “Ubiquitous Relaxation in BTI Stressing - New Evaluation and Insights,” in Conference Proceedings of International Reliability Physics Symposium (IRPS), pp. 20–27, 2008.

[123]   T. Grasser, P.-J. Wagner, P. Hehenberger, W. Gös, and B. Kaczer, “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 526–535, 2008.

[124]   A. T. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan, “NBTI Impact on Transistor and Circuit: Models, Mechanisms and Scaling Effects,” in IEEE International Electron Devices Meeting (IEDM), pp. 14–5, 2003.

[125]   S. Mahapatra, K. Ahmed, D. Varghese, A. Islam, G. Gupta, L. Madhav, D. Saha, and M. Alam, “On the Physical Mechanism of NBTI in Silicon Oxynitride p-MOSFETs: Can Differences in Insulator Processing Conditions Resolve the Interface Trap Generation versus Hole Trapping Controversy?,” in IEEE International Reliability Physics Symposium (IRPS), pp. 1–9, 2007.

[126]   V. Huard, M. Denais, and C. Parthasarathy, “NBTI Degradation: From Physical Mechanisms to Modelling,” Microelectronics Reliability, vol. 46, no. 1, pp. 1–23, 2006.

[127]   C. Sah, “Effects of Surface Recombination and Channel on p-n Junction and Transistor Charactersitics,” IEEE Transactions on Electron Devices, vol. 9, pp. 94–108, 1962.

[128]   A. Neugroschel, C.-T. Sah, K. Han, M. Carroll, T. Nishida, J. Kavalieros, and Y. Lu, “Direct-Current Measurements of Oxide and Interface Traps on Oxidized Silicon,” IEEE Transactions on Electron Devices, vol. 42, no. 9, pp. 1657–1662, 1995.

[129]   M. Waltl, P.-J. Wagner, H. Reisinger, K. Rott, and T. Grasser, “Advanced Data Analysis Algorithms for the Time-Dependent Defect Spectroscopy of NBTI,” in IEEE International Integrated Reliability Workshop Final Report, pp. 74–79, 2012.

[130]   M. Alam, “A Critical Examination of the Mechanics of Dynamic NBTI for PMOSFETs,” in IEEE International Electron Devices Meeting (IEDM), pp. 14.4.1–14.4.4, 2003.

[131]   S. Chakravarthi, A. Krishnan, V. Reddy, C. Machala, and S. Krishnan, “A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability,” in IEEE International Reliability Physics Symposium Proceedings (IRPS), pp. 273–282, 2004.

[132]   S. Mahapatra, M. Alam, P. B. Kumar, T. Dalei, D. Varghese, and D. Saha, “Negative Bias Temperature Instability in CMOS Devices ,” Microelectronic Engineering, vol. 80, no. 0, pp. 114 – 121, 2005. 14th biennial Conference on Insulating Films on Semiconductors {INFOS2005}.

[133]   T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.-J. Wagner, J. Franco, M. Nelhiebel, and B. Kaczer, “The ‘Permanent’ Component of NBTI: Composition and Annealing,” in Conference Proceedings of International Reliability Physics Symposium (IRPS), 2011.

[134]   T. Grasser, B. Kaczer, W. Gös, T. Aichinger, P. Hehenberger, and M. Nelhiebel, “A Two-Stage Model for Negative Bias Temperature Instability,” in IEEE International Reliability Physics Symposium Proceedings, pp. 33–44, 2009.

[135]   P. McWhorter and P. Winokur, “Simple Technique for Separating the Effects of Interface Traps and Trapped-Oxide Charge in Metal-Oxide-Semiconductor Transistors,” Applied Physics Letters, vol. 48, no. 2, pp. 133–135, 1986.

[136]   W. Shockley and W. Read, “Statistics of the Recombinations of Holes and Electrons,” Physical Review, vol. 87, no. 5, pp. 835–842, 1952.

[137]   V. Huard, M. Denais, and C. Parthasarathy, “NBTI Degradation: From Physical Mechanisms to Modelling ,” Microelectronics Reliability, vol. 46, no. 1, pp. 1 – 23, 2006.

[138]   G. Wentzel, “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,” Zeitschrift für Physik, vol. 38, no. 6-7, pp. 518–529, 1926.

[139]   H. Kramers, “Wellenmechanik und Halbzahlige Quantisierung,” Zeitschrift für Physik, vol. 39, no. 10-11, pp. 828–840, 1926.

[140]   L. Brillouin, “La mécanique ondulatoire de Schrödinger; Une Méthode Générale de resolution successives,” Comptes Rendus (Paris), vol. 138, pp. 24–26, 1926.

[141]   R. Pässler, “Description of Nonradiative Multiphonon Transitions in the Static Coupling Scheme,” Czechoslovak Journal of Physics B, vol. 24, no. 3, pp. 322–339, 1974.

[142]   M. Kirton and M. Uren, “Noise in Solid-State Microstructures: A new Perspective on Individual Defects, Interface States and Low-Frequency (1/f) Noise,” Advances in Physics, vol. 38, no. 4, pp. 367–468, 1989.

[143]   O. Ibe, Markov Processes for Stochastic Modeling. Stochastic modeling, Elsevier Science, 2008.

[144]   K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proceedings of the Royal Society of London. Series A, vol. 204, pp. 406–423, 1950.

[145]   M. Lax, “The Franck-Condon Principle and Its Application to Crystals,” Journal of Chemical Physics, vol. 20, no. 11, pp. 1752–1760, 1952.

[146]   F. Schanovsky, W. Gös, and T. Grasser, “Ab-Initio Calculation of the Vibrational Influence on Hole-Trapping,” in Proceedings of the International Workshop on Computational Electronics (IWCE), pp. 163–166, 2010.

[147]   A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology, 2nd ed. (the ”Gold Book”). Blackwell Scientific Publications, Oxford, 1997.

[148]   F. Schanovsky, O. Baumgartner, W. Gös, and T. Grasser, “A Detailed Evaluation of Model Defects as Candidates for the Bias Temperature Instability,” in Proceedings of the 18th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 1–4, 2013.

[149]   M. Bina, T. Aichinger, G. Pobegen, W. Gös, and T. Grasser, “Modeling of DCIV Recombination Currents Using A Multistate Multiphonon Model,” in Final Report of IEEE International Integrated Reliability Workshop (IIRW), pp. 27–31, 2011.

[150]   T. Aichinger, P. M. Lenahan, T. Grasser, G. Pobegen, and M. Nelhiebel, “Evidence for Pb Center-Hydrogen Complexes after Subjecting PMOS Devices to NBTI Stress - a Combined DCIV/SDR Study,” in Conference Proceedings of International Reliability Physics Symposium (IRPS 2012), 2012.

[151]   T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, and B. Kaczer, “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability,” in Conference Proceedings of International Reliability Physics Symposium (IRPS), pp. 16–25, May 2010.

[152]   P. Hehenberger, W. Gös, O. Baumgartner, J. Franco, B. Kaczer, and T. Grasser, “Quantum-Mechanical Modeling of NBTI in High-k SiGe MOSFETs,” in International Conference on Simulation of Semiconductor Processes and Devices, pp. 11–14, 2011.

[153]   T. Aichinger, M. Nelhiebel, S. Einspieler, and T. Grasser, “In Situ Poly Heater-A Reliable Tool for Performing Fast and Defined Temperature Switches on Chip,” IEEE Transactions on Device and Materials Reliability, vol. 10, no. 1, pp. 3–8, 2010.

[154]   T. Grasser, T. Aichinger, H. Reisinger, J. Franco, P.-J. Wagner, M. Nelhiebel, C. Ortolland, and B. Kaczer, “On the ‘Permanent’ Component of NBTI,” in IEEE International Integrated Reliability Workshop Final Report (IRW), 2010.

[155]   J. Cai and C.-T. Sah, “Interfacial Electronic Traps in Surface Controlled Transistors,” IEEE Transactions on Electron Devices, vol. 47, pp. 576 –583, mar 2000.

[156]   T. Grasser, H. Reisinger, W. Gös, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, “Switching Oxide Traps as the Missing Link Between Negative Bias Temperature Instability and Random Telegraph Noise,” in IEEE International Electron Devices Meeting (IEDM), 2009.

[157]   D. Lang and C. Henry, “Nonradiative Recombination at Deep Levels in GaAs and GaP by Lattice-Relaxation Multiphonon Emission,” Physical Review Letters, vol. 35, no. 22, pp. 1525–1528, 1975.

[158]   F. Schanovsky, W. Gös, and T. Grasser, “Multiphonon Hole Trapping from First Principles,” Journal of Vacuum Science & Technology B, vol. 29, no. 1, pp. 01A2011–01A2015, 2011.

[159]   M. Toledano-Luque, B. Kaczer, E. Simoen, R. Degraeve, J. Franco, P. J. Roussel, T. Grasser, and G. Groeseneken, “Correlation of Single Trapping and Detrapping Effects in Drain and Gate Currents of Nanoscaled nFETs and pFETs,” in Conference Proceedings of International Reliability Physics Symposium (IRPS), 2012.

[160]   O. Baumgartner, M. Bina, W. Gös, F. Schanovsky, M. Toledano-Luque, B. Kaczer, H. Kosina, and T. Grasser, “Direct Tunneling and Gate Current Fluctuations,” in Proceedings of the 18th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 17–20, 2013.

[161]   W. Gös, M. Toledano-Luque, O. Baumgartner, M. Bina, F. Schanovsky, B. Kaczer, and T. Grasser, “Understanding Correlated Drain and Gate Current Fluctuations,” in Proceedings of the 20th International Symposium on the Physical & Failure Analysis of Integrated Circuits, pp. 51–56, 2013.

[162]   A. Bravaix, C. Guerin, V. Huard, D. Roy, J.-M. Roux, and E. Vincent, “Hot-Carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40nm NMOS Node at High Temperature,” in IEEE International Reliability Physics Symposium, pp. 531–548, 2009.

[163]   S. Tyaginov, M. Bina, F. Jacopo, D. Osintsev, Y. Wimmer, B. Kaczer, and T. Grasser, “Essential Ingredients for Modeling of Hot-Carrier Degradation in Ultra-Scaled MOSFETs,” in IEEE International Integrated Reliability Workshop Final Report, 2013.

[164]   C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement,” IEEE Journal of Solid-State Circuits, vol. 20, no. 1, pp. 295–305, 1985.

[165]   C. A. Billman, P. M. Lenahan, and W. Weber, “Identification of the Microscopic Structure of New Hot Carrier Damage Centers in Short Channel Mosfets,” MRS Proceedings, vol. 473, 1 1997.

[166]   J. T. Krick, P. M. Lenahan, and G. J. Dunn, “Direct Observation of Interfacial Point Defects Generated by Channel Hot Hole Injection in nchannel Metal Oxide Silicon Field Effect Transistors,” Applied Physics Letters, vol. 59, no. 26, pp. 3437–3439, 1991.

[167]   I. Starkov, H. Enichlmair, S. Tyaginov, and T. Grasser, “Analysis of the Threshold Voltage Turn-Around Effect in High-Voltage n-MOSFETs Due to Hot-Carrier Stress,” in Conference Proceedings of International Reliability Physics Symposium (IRPS), 2012.

[168]   P. Heremans, J. Witters, G. Groeseneken, and H. E. Maes, “Analysis of the Charge Pumping Technique and its Application for the Evaluation of MOSFET Degradation,” IEEE Transactions on Electron Devices, vol. 36, no. 7, pp. 1318–1335, 1989.

[169]   J. F. Chen, S. Chen, K. Wu, and C. M. Liu, “Investigation of Hot-Carrier-Induced Degradation Mechanisms in p-Type High-Voltage Drain Extended Metal–Oxide–Semiconductor Transistors,” Japanese Journal of Applied Physics, vol. 48, no. 4, p. 04C039, 2009.

[170]   S. Tyaginov and T. Grasser, “Modeling of Hot-Carrier Degradation: Physics and Controversial Issues,” in IEEE International Integrated Reliability Workshop Final Report, pp. 206–215, 2012.

[171]   G. Pobegen, S. Tyaginov, M. Nelhiebel, and T. Grasser, “Observation of Normally Distributed Energies for Interface Trap Recovery After Hot-Carrier Degradation,” IEEE Electron Device Letters, vol. 34, no. 8, pp. 939–941, 2013.

[172]   S. Rauch, F. Guarin, and G. La Rosa, “Impact of E-E scattering to the hot carrier degradation of deep submicron NMOSFETs,” IEEE Electron Device Letters, vol. 19, no. 12, pp. 463–465, 1998.

[173]   “The International Technology Roadmap for Semiconductors (ITRS).”

[174]   S. Tyaginov, I. Starkov, O. Triebl, H. Enichlmair, C. Jungemann, J. Park, H. Ceric, and T. Grasser, “Secondary Generated Holes as a Crucial Component for Modeling of HC Degradation in High-voltage n-MOSFET,” in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 123–126, 2011.

[175]   R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London. Series A, vol. 119, no. 781, pp. 173–181, 1928.

[176]   D. J. DiMaria and J. W. Stasiak, “Trap Creation in Silicon Dioxide Produced by Hot Electrons,” Journal of Applied Physics, vol. 65, no. 6, pp. 2342–2356, 1989.

[177]   D. J. DiMaria and J. H. Stathis, “Anode Hole Injection, Defect Generation, and Breakdown in Ultrathin Silicon Dioxide Films,” Journal of Applied Physics, vol. 89, no. 9, pp. 5015–5024, 2001.

[178]   I. Starkov and H. Enichlmair, “Local oxide capacitance as a crucial parameter for characterization of hot-carrier degradation in long-channel n-MOSFETs,” Journal of Vacuum Science & Technology B, vol. 31, no. 1, pp. 01A118–1–01A118–7, 2013.

[179]   F.-C. Hsu and S. Tam, “Relationship Between MOSFET Degradation and Hot-Electron-Induced Interface-State Generation,” IEEE Electron Device Letters, vol. 5, no. 2, pp. 50–52, 1984.

[180]   T. Mizuno, A. Toriumi, M. Iwase, M. Takahashi, H. Niiyama, M. Fukmoto, and M. Yoshimi, “Hot-Carrier Effects in 0.1μm Gate Length CMOS Devices,” in IEEE International Electron Devices Meeting (IEDM), pp. 695–698, 1992.

[181]   A. Bravaix and V. Huard, “Hot-Carrier Degradation Issues in Advanced CMOS Nodes,” in European Symposium on the Reliability of Electron Devices, 2010.

[182]   I. Starkov, S. Tyaginov, H. Enichlmair, J. Cervenka, C. Jungemann, S. Carniello, J. M. Park, H. Ceric, and T. Grasser, “Hot-Carrier Degradation Caused Interface State Profile-Simulation versus Experiment,” Journal of Vacuum Science & Technology B, vol. 29, pp. 01AB09–1–01AB09–8, 2011.

[183]   W. McMahon and K. Hess, “A Multi-Carrier Model for Interface Trap Generation,” Journal of Computational Electronics, vol. 1, no. 3, pp. 395–398, 2002.

[184]   W. McMahon, K. Matsuda, J. Lee, K. Hess, and J. Lyding, “The Effect of a Multiple Carrier Model of Interface Trap Generation on Lifetime Extraction for MOSFETs,” Proceedings of the International Conference on Modeling and Simulation of Microsystems, vol. 1, p. 576, 2002.

[185]   C. Guerin, V. Huard, and A. Bravaix, “General Framework about Defect Creation at the Si SiO2 Interface,” Journal of Applied Physics, vol. 105, no. 11, pp. 114513–114513, 2009.

[186]   S. Tyaginov, I. Starkov, H. Enichlmair, J. Park, C. Jungemann, and T. Grasser, “Physics-Based Hot-Carrier Degradation Models,” ECS Transactions, 2011.

[187]   W. McMahon, A. Haggaag, and K. Hess, “Reliability Scaling Issues for Nanoscale Devices,” IEEE Transactions Nanotechnology, vol. 2, no. 1, pp. 33–38, 2003.

[188]   A. Stesmans and V. Afanasev, “Electrical Activity of Interfacial Paramagnetic Defects in Thermal (100) Si/SiO2,” Physical Review B, vol. 57, no. 16, p. 10030, 1998.

[189]   A. Zaka, P. Palestri, Q. Rafhay, R. Clerc, M. Iellina, D. Rideau, C. Tavernier, G. Pananakakis, H. Jaouen, and L. Selmi, “An Efficient Nonlocal Hot Electron Model Accounting for Electron-Electron Scattering,” IEEE Transactions on Electron Devices, vol. 59, no. 4, pp. 983 –993, 2012.

[190]   S. Tyaginov, I. Starkov, C. Jungemann, H. Enichlmair, J. Park, and T. Grasser, “Impact of the Carrier Distribution Function on Hot-Carrier Degradation Modeling,” in Proceedings of the European Solid-State Device Research Conference, pp. 151–154, 2011.

[191]   D. Caughey and R. Thomas, “Carrier Mobilities in Silicon Empirically Related to Doping and Field,” in Proceedings of the IEEE, vol. 52, pp. 2192–2193, 1967.

[192]   M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI: The Complete Reference. Cambridge, MA, USA: MIT Press, 1995.

[193]   U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid. Elsevier Science, 2000.

[194]   M. F. Adams, Multigrid Equation Solvers for Large Scale Nonlinear Finite Element Simulations. PhD thesis, University of california, Berkeley, 1998.