Next: List of Figures
Up: Peter Fleischmann's Dissertation
Previous: 8. Outlook
- 1
-
D. Adalsteinsson and J.A. Sethian.
A Fast Level Set Method for Propagating Interfaces.
J.Comput.Phys., 118(1):269-277, 1995.
- 2
-
M.J. Aftosmis, J.E. Melton, and M.J. Berger.
Adaptation and Surface Modeling for Cartesian Mesh Methods.
In 12th AIAA Computational Fluid Dynamics Conference, number
95-1725-CP, San Diego, USA, 1995.
- 3
-
C.G. Armstrong, D.J. Robinson, R.M. McKeag, T.S. Li, S.J. Bridgett, and R.J.
Donaghy.
Applications of the Medial Axis Transform in Analysis Modelling.
In Proc. of the 5th International Conference on Reliability of
Finite Element Methods for Engineering Applications, pages 415-426, 1995.
- 4
-
V. Axelrad.
Grid Quality and Its Influence on Accuracy and Convergence in Device
Simulation.
IEEE Trans.Computer-Aided Design of Integrated Circuits and
Systems, 17(2):149-157, 1998.
- 5
-
I. Babuska and A.K. Aziz.
On the Angle Condition in the Finite Element Method.
SIAM J.Numer.Anal., 13(2):214-226, 1976.
- 6
-
M. Bächtold, M. Emmenegger, J.G. Korvink, and H. Baltes.
An Error Indicator and Automatic Adaptive Meshing for Electrostatic
Boundary Element Simulations.
IEEE Trans.Computer-Aided Design of Integrated Circuits and
Systems, 16(12):1439-1446, 1997.
- 7
-
B.S. Baker, E. Grosse, and C.S. Rafferty.
Nonobtuse Triangulation of Polygons.
Discrete & Computational Geometry, 3(2):147-168, 1988.
- 8
-
R.E. Bank.
PLTMG: A Software Package for Solving Elliptic Partial
Differential Equations, volume 7 of Frontiers in Applied Mathematics.
SIAM, Philadelphia, 1990.
Users' Guide 6.0.
- 9
-
R.E. Bank and R.K. Smith.
Mesh Smoothing Using a Posteriori Error Estimates.
SIAM J.Numer.Anal., 34(3):979-997, 1997.
- 10
-
R.E. Bank and A. Weiser.
Some A Posteriori Error Estimators for Elliptic Partial Differential
Equations.
Math.Comp., 44(170):283-301, 1985.
- 11
-
B. Barber.
Computational Geometry with Imprecise Data and Arithmetic.
PhD thesis, Computer Science Department, Princeton University, 1992.
Available as Techn.Rep. CS-TR-377-92.
- 12
-
B. Barber, D.P. Dobkin, and H.T. Huhdanpaa.
The Quickhull Algorithm for Convex Hull.
Technical Report GCG53, The Geometry Center, University of Minnesota,
Minneapolis, Minnesota, USA, 1993.
http://www.geom.umn.edu/ bradb/qhull-news.html.
- 13
-
R. Bauer.
Numerische Berechnung von Kapazitäten in dreidimensionalen
Verdrahtungsstrukturen.
Dissertation, Technische Universität Wien, 1994.
- 14
-
M. Bern.
Compatible Tetrahedralizations.
In Proc. 9th Annual Symposium on Computational Geometry, pages
281-288, San Diego, USA, 1993. ACM.
- 15
-
M. Bern and D. Eppstein.
Mesh Generation and Optimal Triangulation.
In F.K. Hwang and D.-Z. Du, editors, Computing in Euclidean
Geometry. World Scientific, 1992.
- 16
-
M. Bern, D. Eppstein, and J.R. Gilbert.
Provably Good Mesh Generation.
In Proc. 31th Annual Symposium on Foundations of Computer
Science, pages 231-241. IEEE, 1990.
- 17
-
M. Berzins.
A Solution-Based Triangular and Tetrahedral Mesh Quality Indicator.
SIAM J.Sci.Comput., 19(6):2051-2060, 1998.
- 18
-
T. Binder, K. Dragosits, T. Grasser, R. Klima, M. Knaipp, H. Kosina, R. Mlekus,
V. Palankovski, M. Rottinger, G. Schrom, S. Selberherr, and M. Stockinger.
MINIMOS-NT User's Guide.
Institut für Mikroelektronik, 1998.
- 19
-
T.D. Blacker and M.B. Stephenson.
Paving: A New Approach to Automated Quadrilateral Mesh Generation.
Int.J.Numer.Meth.Eng., 32(4):811-847, 1991.
- 20
-
F.J. Bossen and P.S. Heckbert.
A Pliant Method for Anisotropic Mesh Generation.
In IMRT'96 [144], pages 63-74.
- 21
-
A. Bowyer.
Computing Dirichlet Tessellations.
The Computer Journal, 24(2):162-166, 1981.
- 22
-
E.K. Buratynski.
A Fully Automatic Three-Dimensional Mesh Generator for Complex
Geometries.
Int.J.Numer.Meth.Eng., 30:931-952, 1990.
- 23
-
G. Butlin and C. Stops.
CAD Data Repair.
In IMRT'96 [144], pages 7-12.
- 24
-
J.E. Castillo.
Mathematical Aspects of Numerical Grid Generation.
SIAM, Philadelphia, 1991.
- 25
-
J.C. Cavendish, D.A. Field, and W.H. Frey.
An Approach To Automatic Three-Dimensional Finite Element Mesh
Generation.
Int.J.Numer.Meth.Eng., 21:329-347, 1985.
- 26
-
Johann Cervenka.
CGG: Ein Gittergenerator für die Bauelementesimulation.
Diplomarbeit, Technische Universität Wien, 1999.
- 27
-
T. Chen, D.W. Yergeau, and R.W. Dutton.
A Common Mesh Implementation for Both Static and Moving Boundary
Process Simulations.
In Meyer and Biesemans [107], pages 101-104.
- 28
-
L.P. Chew.
Guaranteed-Quality Triangular Meshes.
Technical Report TR-89-983, Cornell University, 1989.
- 29
-
L.P. Chew.
Guaranteed-Quality Mesh Generation for Curved Surfaces.
In Proc. 9th Annual Symposium on Computational Geometry, pages
274-280, San Diego, USA, 1993. ACM.
- 30
-
L.P. Chew.
Guaranteed-Quality Delaunay Meshing in 3D.
In Proc. 13th Annual Symposium on Computational Geometry, pages
391-393. ACM, 1997.
- 31
-
P. Cignoni, D. Laforenza, C. Montani, R. Perego, and R. Scopigno.
Evaluation of Parallelization Strategies for an Incremental
Delaunay Triangulator in .
Concurrency: Practice and Experience, 7(1):61-80, 1995.
- 32
-
P. Cignoni, C. Montani, R. Perego, and R. Scopigno.
Parallel 3D Delaunay Triangulation.
In EUROGRAPHICS, volume 12, pages C-129. Blackwell Publishers,
1993.
- 33
-
P. Cignoni, C. Montani, and R. Scopigno.
DeWall: a Fast Divide & Conquer Delaunay Triangulation Algorithm
in .
Computer-Aided Design, 30(5):333-341, 1998.
- 34
-
B.A. Cipra.
A Rapid-Development Force for CFD: Cartesian Grids.
SIAM News, 28(10):1-2, 1995.
- 35
-
P. Conti.
Grid Generation for Three-Dimensional Semiconductor Device
Simulation.
Hartung-Gorre, 1991.
- 36
-
Boris N. Delaunay.
Sur la Sphère Vide.
Izvestia Akademia Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk, 7:793-800, 1934.
- 37
-
T.K. Dey, C.L. Bajaj, and K. Sugihara.
On Good Triangulations in Three Dimensions.
In Proc. of the ACM Symposium on Solid Modeling Foundations and
CAD/CAM Applications. ACM, 1991.
- 38
-
R.J. Donaghy, W. McCune, S.J. Bridgett, C.G. Armstrong, D.J. Robinson, and R.M.
McKeag.
Dimensional Reduction of Analysis Models.
In IMRT'96 [144], pages 307-320.
- 39
-
R.A. Dwyer.
Higher-Dimensional Voronoi Diagrams in Linear Expected Time.
Discrete & Computational Geometry, 6:343-367, 1991.
- 40
-
H. Edelsbrunner, F.P. Preparata, and D.B. West.
Tetrahedrizing Point Sets in Three Dimensions.
J. Symbolic Computation, 10:335-347, 1990.
- 41
-
H. Edelsbrunner, T.S. Tan, and R. Waupotitsch.
An
Time Algorithm for the Minmax Angle
Triangulation.
SIAM J.Sci.Stat.Comput., 13(4):994-1008, 1992.
- 42
-
T. Fang and L.A. Piegl.
Delaunay Triangulation in Three Dimensions.
IEEE Computer Graphics and Applications, 15(3):62-69, 1995.
- 43
-
T.P. Fang and L.A. Piegl.
Delaunay Triangulation Using a Uniform Grid.
IEEE Computer Graphics and Applications, 13(3):36-47, 1993.
- 44
-
C. Fischer, P. Habas, O. Heinreichsberger, H. Kosina, Ph. Lindorfer,
P. Pichler, H. Pötzl, C. Sala, A. Schütz, S. Selberherr,
M. Stiftinger, and M. Thurner.
MINIMOS 6 User's Guide.
Institut für Mikroelektronik, Technische Universität
Wien, Austria, 1994.
- 45
-
P. Fleischmann, R. Sabelka, A. Stach, R. Strasser, and S. Selberherr.
Grid Generation for Three Dimensional Process and Device Simulation.
In SISPAD'96 [166], pages 161-166.
- 46
-
S. Fortune.
A Sweepline Algorithm for Voronoi Diagrams.
Algorithmica, 2(2):153-174, 1987.
- 47
-
S. Fortune.
Voronoi Diagrams and Delaunay Triangulations.
In F.K. Hwang and D.-Z. Du, editors, Computing in Euclidean
Geometry, pages 193-233. World Scientific, Singapore, 1992.
- 48
-
S. Fortune and C.J. Van Wyk.
Efficient Exact Arithmetic for Computational Geometry.
In Proc. 9th Annual Symposium on Computational Geometry, pages
163-172, San Diego, USA, 1993. ACM.
- 49
-
L.A. Freitag and C. Ollivier-Gooch.
A Comparison of Tetrahedral Mesh Improvement Techniques.
In IMRT'96 [144], pages 87-100.
- 50
-
P.J. Frey, H. Borouchaki, and P.L. George.
Delaunay Tetrahedralization Using an Advancing-Front Approach.
In IMRT'96 [144], pages 31-43.
- 51
-
R.S. Gallagher, editor.
Computer Visualization.
CRC Press, 1995.
- 52
-
G. Garretón.
A Hybrid Approach to 2D and 3D Mesh Generation for Semiconductor
Device Simulation.
Dissertation, ETH Zürich, 1999.
Hartung-Gorre.
- 53
-
G. Garretón, L. Villablanca, N. Strecker, and W. Fichtner.
Unified Grid Generation and Adaptation for Device Simulation.
In Ryssel and Pichler [138], pages 468-471.
- 54
-
G. Garretón, L. Villablanca, N. Strecker, and W. Fichtner.
A Hybrid Approach for Building 2D and 3D Conforming Delaunay Meshes
Suitable for Process and Device Simulation.
In Meyer and Biesemans [107], pages 185-188.
- 55
-
P.L. George.
Automatic Mesh Generation and Finite Element Computation.
In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical
Analysis, volume IV. Elsevier, 1996.
- 56
-
P.L. George, F. Hecht, and E. Saltel.
Automatic Mesh Generator with Specified Boundary.
Computer Methods in Applied Mechanics and Engineering,
92:269-288, 1991.
- 57
-
C.S. Gitlin and C.R. Johnson.
A Tool for Exploring 3D Unstructured Tetrahedral Meshes.
In IMRT'96 [144], pages 333-345.
- 58
-
H.K. Gummel.
A Self-Consistent Iterative Scheme for One-Dimensional Steady State
Transistor Calculations.
IEEE Trans.Electron Devices, ED-11:455-465, 1964.
- 59
-
S. Halama.
The Viennese Integrated System for Technology CAD
Applications-Architecture and Critical Software Components.
Dissertation, Technische Universität Wien, 1994.
- 60
-
J. Häuser and C. Taylor.
Numerical Grid Generation in Computational Fluid Dynamics.
Pineridge Press, 1986.
- 61
-
W.D. Henshaw.
Automatic Grid Generation.
In A. Iserles, editor, Acta Numerica, volume 5, pages 121-148.
Cambridge University Press, 1996.
- 62
-
L.R. Hermann.
Laplacian-Isoparametric Grid Generation Scheme.
J. of the Engineering Mechanics Division of the American Society
of Civil Engineers, 102:749-756, 1976.
- 63
-
F. Hermeline.
Triangulation Automatique d'un Polyèdre en Dimension N.
RAIRO Analyse Numérique, 16(3):211-242, 1982.
- 64
-
N. Hitschfeld.
Grid Generation for Three-Dimensional Non-Rectangular
Semiconductor Devices.
Hartung-Gorre, 1993.
- 65
-
N. Hitschfeld, P. Conti, and W. Fichtner.
Mixed Element Trees: A Generalization of Modified Octrees for the
Generation of Meshes for the Simulation of Complex 3-D Semiconductor Device
Structures.
IEEE Trans.Computer-Aided Design, 12(11):1714-1725, 1993.
- 66
-
N. Hitschfeld and W. Fichtner.
3D Grid Generation for Semiconductor Devices Using a Fully Flexible
Refinement Approach.
In Selberherr et al. [157], pages 413-416.
- 67
-
N. Hitschfeld, M.C. Rivara, and M. Palma.
Improving the Quality of Delaunay Triangulations for the Control
Volume Discretization Method.
In Meyer and Biesemans [107], pages 189-192.
- 68
-
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Mesh Optimization.
In Computer Graphics, SIGGRAPH'93 Proceedings, pages 19-26,
1993.
- 69
-
T. Ikeda.
Maximum Principle in Finite Element Models for
Convection-Diffusion Phenomena.
North Holland, Amsterdam, 1983.
- 70
-
B. Joe.
Delaunay Triangular Meshes in Convex Polygons.
SIAM J.Sci.Stat.Comput., 7(2):514-539, 1986.
- 71
-
B. Joe.
Three-Dimensional Triangulations from Local Transformations.
SIAM J.Sci.Stat.Comput., 10(4):718-741, 1989.
- 72
-
B. Joe.
Construction of Three-Dimensional Delaunay Triangulations Using
Local Transformations.
Computer Aided Geometric Design, 8:123-142, 1991.
- 73
-
B. Joe.
Delaunay versus Max-Min Solid Angle Triangulations for
Three-Dimensional Mesh Generation.
Int.J.Numer.Meth.Eng., 31:987-997, 1991.
- 74
-
B. Joe.
GEOMPACK - A Software Package for the Generation of Meshes using
Geometric Algorithms.
Advanced Engineering Software, 13(5/6):325-331, 1991.
- 75
-
B. Joe.
Construction of Three-Dimensional Improved-Quality Triangulations
Using Local Transformations.
SIAM J.Sci.Comput., 16(6):1292-1307, 1995.
- 76
-
A.A. Johnson and T.E. Tezduyar.
Mesh Generation and Update Strategies for Parallel Computation of 3D
Flow Problems.
In S.N. Atluri, G. Yagawa, and T.A. Cruse, editors, Proc. of the
International Conference on Computational Engineering Science, Hawaii, USA,
1995.
- 77
-
Y. Kallinderis, A. Khawaja, and H. McMorris.
Hybrid Prismatic/Tetrahedral Grids for Turbomaschinery Applications.
In 6th International Meshing Roundtable, pages 21-31, Park
City, Utah, 1997. Sandia National Labs.
- 78
-
P. Knupp and S. Steinberg.
Fundamentals of Grid Generation.
CRC Press, 1993.
- 79
-
N. Kotani.
TCAD in Selete.
In Meyer and Biesemans [107], pages 3-7.
- 80
-
M. Krizek.
On the Maximum Angle Condition for Linear Tetrahedral Elements.
SIAM J.Numer.Anal., 29:513-520, 1992.
- 81
-
P. Krysl and M. Ortiz.
Generation of Tetrahedral Finite Element Meshes: Variational
Delaunay Approach.
In 7th International Meshing Roundtable, pages 272-284,
Dearborn, Michigan, 1998. Sandia National Labs.
- 82
-
S. Kumashiro and I. Yokota.
A Triangular Mesh Generation Method Suitable for the Analysis of
Complex MOS Device Structures.
In Int. Workshop on Numerical Modeling of Processes and Devices
for Integrated Circuits NUPAD V, pages 167-170, Honolulu, 1994.
- 83
-
M.E. Law.
The Virtual IC Factory can it be achieved?
IEEE Circuits & Devices, pages 25-31, 1995.
- 84
-
C.L. Lawson.
Software for Surface Interpolation.
In J.R. Rice, editor, Mathematical Software III, pages
161-194. Academic Press, New York, 1977.
- 85
-
C. Ledl.
Konvertierung rasterorienter Geometrien in polygonal begrenzte.
Diplomarbeit, Technische Universität Wien, 1994.
- 86
-
D.T. Lee and B.J. Schachter.
Two Algorithms for Constructing a Delaunay Triangulation.
International Journal of Computer and Information Sciences,
9(3):219-242, 1980.
- 87
-
E. Leitner, W. Bohmayr, P. Fleischmann, E. Strasser, and S. Selberherr.
3D TCAD at TU Vienna.
In J. Lorenz, editor, 3-Dimensional Process Simulation, pages
136-161, Wien, 1995. Springer.
- 88
-
E. Leitner and S. Selberherr.
Three-Dimensional Grid Adaptation Using a Mixed-Element Decomposition
Method.
In Ryssel and Pichler [138], pages 464-467.
- 89
-
F.W. Letniowski.
Three-Dimensional Delaunay Triangulations for Finite Element
Approximations to a Second-Order Diffusion Operator.
SIAM J.Sci.Stat.Comput., 13(3):765-770, 1992.
- 90
-
K. Lilja, V. Moroz, and D. Wake.
A 3D Mesh Generation Method for the Simulation of Semiconductor
Processes and Devices.
In MSM'98 [113], pages 334-338.
- 91
-
J. Litsios, B. Schmithüsen, U. Krumbein, A. Schenk, E. Lyumkis, B. Polsky,
and W. Fichtner.
DESSIS 3.0: Manual.
ISE Integrated Systems Engineering, Zürich, Switzerland, 1996.
release 3.0 edition.
- 92
-
A. Liu and B. Joe.
On the Shape of Tetrahedra from Bisection.
Mathematics of Computation, 63(207):141-154, 1994.
- 93
-
A. Liu and B. Joe.
Quality Local Refinement of Tetrahedral Meshes Based on Bisection.
SIAM J.Sci.Comput., 16(6):1269-1291, 1995.
- 94
-
R. Löhner and P. Parikh.
Three-Dimensional Grid Generation by the Advancing Front Method.
Int.J.Numer.Meths.Fluids., 8:1135-1149, 1988.
- 95
-
W.E. Lorensen and H.E. Cline.
Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
Computer Graphics, 21(4):163-169, 1987.
- 96
-
R.H. Macneal.
An Asymmetrical Finite Difference Network.
Quarterly Applied Mathematics, 11(3):295-310, 1952.
- 97
-
M. Mäntylä.
An Introduction to Solid Modeling.
Computer Science Press, Rockville, 1988.
- 98
-
MARC Analysis Research Corp., Palo Alto, USA.
Automatic Mesh Generation in Mentat II, 1995.
- 99
-
P.V. Marcal.
Constructive Solid Geometry, the CAD-FEM Connection.
In IMRT'96 [144], pages 157-168.
- 100
-
D.L. Marcum and N.P. Weatherill.
Unstructured Grid Generation Using Iterative Point Insertion and
Local Reconnection.
In 12th AIAA Applied Aerodynamics Conference, number 94-1926,
Colorado Springs, USA, 1994.
- 101
-
R. Martins, R. Sabelka, W. Pyka, and S. Selberherr.
Rigorous Capacitance Simulation of DRAM Cells.
In Meyer and Biesemans [107], pages 69-72.
- 102
-
M. Masquelier, D. George, and A. Kuprat.
Unstructured 3D Grid Toolbox for Modeling and Simulation.
In MSM'98 [113], page M3.4.3.
Book of abstracts, MSM'98.
- 103
-
C.W. Mastin and J.F. Thompson.
Quasiconformal Mappings and Grid Generation.
SIAM J.Sci.Stat.Comput., 5(2):305-316, 1984.
- 104
-
D.J. Mavriplis.
An Advancing Front Delaunay Triangulation Algorithm Designed for
Robustness.
J.Comput.Phys., 117:90-101, 1995.
- 105
-
J.E. Melton, F.Y. Enomoto, and M.J. Berger.
3D Automatic Cartesian Grid Generation for Euler Flows.
AIAA, (93-3386-CP), 1993.
- 106
-
M.L. Merriam.
An Efficient Advancing Front Algorithm for Delaunay Triangulation.
In AIAA 29th Aerospace Sciences Meeting, number 91-0792, Reno,
USA, 1993.
- 107
-
K. De Meyer and S. Biesemans, editors.
Simulation of Semiconductor Processes and Devices.
Springer, Wien, New York, 1998.
- 108
-
G.L. Miller, D. Talmor, S. Teng, N. Walkington, and H. Wang.
Control Volume Meshes Using Sphere Packing.
In IMRT'96 [144], pages 47-62.
- 109
-
S.A. Mitchell and S.A. Vavasis.
Quality Mesh Generation in Three Dimensions.
Technical Report TR-92-1267, Cornell University, 1992.
http://www.cs.cornell.edu/home/vavasis/qmg1.1.
- 110
-
R. Mlekus and S. Selberherr.
Polygonal Geometry Reconstruction after Cellular Etching or
Deposition Simulation.
In Ryssel and Pichler [138], pages 50-53.
- 111
-
R.H. Möhring and M. Müller-Hannemann.
Mesh Refinement via Bidirected Flows: Modeling, Complexity, and
Computational Results.
J.ACM, 44(3):395-426, 1997.
- 112
-
V. Moroz, S. Motzny, and K. Lilja.
A Boundary Conforming Mesh Generation Algorithm for Simulation of
Devices with Complex Geometry.
In SISPAD'97 [167], pages 293-295.
- 113
-
International Conference on Modeling and Simulation of Microsystems
Semiconductors, Sensors and Actuators, Santa Clara, CA, USA, 1998.
- 114
-
E.P. Mücke.
Shapes and Implementations in Three-Dimensional Geometry.
PhD thesis, Computer Science Department, University of Illinois at
Urbana-Champaign, 1993.
- 115
-
E.P. Mücke.
A Robust Implementation for Three-Dimensional Delaunay
Triangulations.
Int. Journal of Computational Geometry & Applications,
8(2):255-276, 1998.
- 116
-
S. Müller, K. Kells, and W. Fichtner.
Automatic Rectangle-Based Adaptive Mesh Generation Without Obtuse
Angles.
IEEE Trans.Computer-Aided Design, 11(7):855-863, 1992.
- 117
-
A. Okabe, B. Boots, and K. Sugihara.
Spatial Tessellations - Concepts and Applications of Voronoi
Diagrams.
Wiley, 1992.
- 118
-
A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci.
Dimension-Independent Modeling with Simplicial Complexes.
ACM Trans.Graphics, 12(1):56-102, 1993.
- 119
-
A.L. Pardhanani and G.F. Carey.
A Mapped Scharfetter-Gummel Formulation for the Efficient
Simulation of Semiconductor Device Models.
IEEE Trans.Computer-Aided Design of Integrated Circuits and
Systems, 16(10):1227-1233, 1997.
- 120
-
J.W. Peterson.
Tessellation of NURB Surfaces.
In P.S. Heckbert, editor, Graphics Gems IV, pages 286-320.
Academic Press, 1994.
- 121
-
Ch. Pichler, R. Plasun, R. Strasser, and S. Selberherr.
High-Level TCAD Task Representation and Automation.
IEEE J.Technology Computer Aided Design, 1997.
http://www.ieee.org/journal/tcad/accepted/pichler-may97/.
- 122
-
L.A. Piegl and A.M. Richard.
Algorithm and Data Structure for Triangulating Multiply Connected
Polygonal Domains.
Comput. & Graphics, 17(5):563-574, 1993.
Pergamon Press.
- 123
-
F.P. Preparata and M.I. Shamos.
Computational Geometry.
Springer, 1985.
- 124
-
M. Price, C. Stops, and G. Butlin.
A Medial Object Toolkit For Meshing and Other Applications.
In IMRT'95 [143], pages 219-229.
- 125
-
M. Putti and Ch. Cordes.
Finite Element Approximation of the Diffusion Operator on Tetrahedra.
SIAM J.Sci.Comput., 19(4):1154-1168, 1998.
- 126
-
W. Pyka, P. Fleischmann, B. Haindl, and S. Selberherr.
Linking Three-Dimensional Topography Simulation with High Pressure
CVD Reaction Kinetics.
In International Conference on Simulation of Semiconductor
Processes and Devices, pages 199-202, Kyoto, Japan, 1999. Business Center
for Academic Societies Japan.
- 127
-
M. Radi.
Three-Dimensional Simulation of Thermal Oxidation.
Dissertation, Technische Universität Wien, 1998.
- 128
-
M. Radi, E. Leitner, E. Hollensteiner, and S. Selberherr.
AMIGOS: Analytical Model Interface & General Object-Oriented
Solver.
In SISPAD'97 [167], pages 331-334.
- 129
-
M. Radi and S. Selberherr.
Three-Dimensional Adaptive Mesh Relaxation.
In Meyer and Biesemans [107], pages 193-196.
- 130
-
V.T. Rajan.
Optimality of the Delaunay Triangulation in .
In Proc. 7th Annual Symposium on Computational Geometry, pages
357-363. ACM, 1991.
- 131
-
M.C. Rivara.
Mesh Refinement Processes Based on the Generalized Bisection of
Simplices.
SIAM J.Numer.Anal., 21(3):604-613, 1984.
- 132
-
M.C. Rivara and P. Inostroza.
A Discussion on Mixed (Longest Side Midpoint Insertion) Delaunay
Techniques for the Triangulation Refinement Problem.
In IMRT'95 [143], pages 335-346.
- 133
-
M. Rottinger.
Generation of Triangular Grids in MINIMOS-NT.
Annual review, Institute for Microelectronics, Vienna, Austria, 1997.
http://www.iue.tuwien.ac.at/reviews/1997/rottinger_text.html.
- 134
-
J. Ruppert.
Results on Triangulation and High Quality Mesh Generation.
PhD thesis, University of California at Berkeley, 1992.
- 135
-
J. Ruppert.
A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation.
Journal of Algorithms, 18:548-585, 1995.
- 136
-
J. Ruppert and R. Seidel.
On the Difficulty of Tetrahedralizing 3-Dimensional Non-Convex
Polyhedra.
In Proc. 5th Annual Symposium on Computational Geometry, pages
380-393. ACM, 1989.
- 137
-
J. Ruppert and R. Seidel.
On the Difficulty of Triangulating Three-Dimensional Non-Convex
Polyhedra.
Discrete & Computational Geometry, 7:227-253, 1992.
- 138
-
H. Ryssel and P. Pichler, editors.
Simulation of Semiconductor Devices and Processes, volume 6,
Wien, 1995. Springer.
- 139
-
A. Saalfeld.
Delaunay Edge Refinements.
In Proc. 3rd Canadian Conf. Comp. Geometry, pages 33-36, 1991.
- 140
-
R. Sabelka, R. Martins, and S. Selberherr.
Accurate Layout-Based Interconnect Analysis.
In Meyer and Biesemans [107], pages 336-339.
- 141
-
Z.H. Sahul, R.W. Dutton, and M. Noell.
Grid and Geometry Techniques for Multi-Layer Process Simulation.
In Selberherr et al. [157], pages 417-420.
- 142
-
H. Samet.
The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.
- 143
-
Sandia National Labs.
4th International Meshing Roundtable, Albuquerque, New Mexico,
1995.
- 144
-
Sandia National Labs.
5th International Meshing Roundtable, Pittsburgh, Pennsylvania,
1996.
- 145
-
N. Sapidis and R. Perucchio.
Delaunay Triangulation of Arbitrarily Shaped Planar Domains.
Computer Aided Geometric Design, 8:421-437, 1991.
- 146
-
D.L. Scharfetter and H.K. Gummel.
Large-Signal Analysis of a Silicon Read Diode Oscillator.
IEEE Trans.Electron Devices, ED-16(1):64-77, 1969.
- 147
-
R. Schneiders.
Information on Finite Element Mesh Generation.
publ. on the WWW.
http://www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html.
- 148
-
R. Schneiders, R. Schindler, and F. Weiler.
Octree-based Generation of Hexahedral Element Meshes.
In IMRT'96 [144], pages 205-215.
- 149
-
E. Schönhardt.
Über die Zerlegung von Dreieckspolyedern in Tetraeder.
Mathematische Annalen, 98:309-312, 1928.
- 150
-
W. Schroeder, K. Martin, and B. Lorensen.
The Visualization Toolkit: An Object-Oriented Approach to 3D
Graphics.
Prentice-Hall, 1996.
- 151
-
W.J. Schroeder and M.S. Shephard.
Geometry Based Fully Automatic Mesh Generation and the Delaunay
Triangulation.
Int.J.Numer.Meth.Eng., 26:2503-2515, 1988.
- 152
-
W.J. Schroeder and M.S. Shephard.
A Combined Octree/Delaunay Method for Fully Automatic 3-D Mesh
Generation.
Int.J.Numer.Meth.Eng., 29:37-55, 1990.
- 153
-
W.J. Schroeder, J.A. Zarge, and W.E. Lorenson.
Decimation of Triangle Meshes.
Computer Graphics, 26(2):65-70, 1992.
- 154
-
H.R. Schwarz.
Methode der finiten Elemente.
Teubner, 1980.
- 155
-
R. Seidel.
Constrained Delaunay Triangulations and Voronoi Diagrams with
Obstacles.
Technical Report 260, Inst. for Information Processing, Graz,
Austria, 1988.
- 156
-
S. Selberherr.
Analysis and Simulation of Semiconductor Devices.
Springer, Wien, 1984.
- 157
-
S. Selberherr, H. Stippel, and E. Strasser, editors.
Simulation of Semiconductor Devices and Processes, volume 5.
Springer, 1993.
- 158
-
M. Sever.
Delaunay Partitioning in Three Dimensions and Semiconductor Models.
COMPEL, 5(2):75-93, 1986.
- 159
-
M.S. Shephard and M.K. Georges.
Automatic Three-Dimensional Mesh Generation by the Finite Octree
Technique.
Int.J.Numer.Meth.Eng., 32:709-749, 1991.
- 160
-
J.R. Shewchuk.
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator.
In First Workshop on Applied Computational Geometry, pages
124-133, Philadelphia, 1996. ACM.
- 161
-
J.R. Shewchuk.
Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates.
Discrete & Computational Geometry, 18(3):305-363, 1997.
- 162
-
J.R. Shewchuk.
Delaunay Refinement Mesh Generation.
PhD thesis, Computer Science Department, Carnegie Mellon University,
1997.
Available as Techn.Rep. CMU-CS-97-137.
- 163
-
J.R. Shewchuk.
A Condition Guaranteeing the Existence of Higher-Dimensional
Constrained Delaunay Triangulations.
In Proc. 14th Annual Symposium on Computational Geometry, pages
76-85. ACM, 1998.
- 164
-
J.R. Shewchuk.
Tetrahedral Mesh Generation by Delaunay Refinement.
In Proc. 14th Annual Symposium on Computational Geometry, pages
86-95. ACM, 1998.
- 165
-
N. Shigyo, T. Wada, and S. Yasuda.
Discretization Problem for Multidimensional Current Flow.
IEEE Trans.Computer-Aided Design, 8(10):1046-1050, 1989.
- 166
-
International Conference on Simulation of Semiconductor Processes and
Devices, Tokyo, Japan, 1996. Business Center for Academic Societies Japan.
- 167
-
International Conference on Simulation of Semiconductor Processes and
Devices, Cambridge, Massachusetts, 1997.
- 168
-
S.P. Spekreijse.
Elliptic Grid Generation Based on Laplace Equations and Algebraic
Transformations.
J.Comput.Phys., 118:38-61, 1995.
- 169
-
V. Srinivasan, L. Nackman, J. Tang, and S. Meshkat.
Automatic Mesh Generation Using the Symmetric Axis Transformation of
Polygonal Domains.
Proc.IEEE, 80(9):1485-1501, 1992.
- 170
-
E. Strasser and S. Selberherr.
Algorithms and Models for Cellular Based Topography Simulation.
IEEE Trans.Computer-Aided Design, 14(9):1104-1114, 1995.
- 171
-
R. Strasser.
Multigrid Methods in 2D-Process Simulation.
Diplomarbeit, Technische Universität Wien, 1995.
- 172
-
R. Strasser, Ch. Pichler, and S. Selberherr.
VISTA - A Framework for Technology CAD Purposes.
In W. Hahn and A. Lehmann, editors, 9th European Simulation
Symposium, pages 450-454, Budapest, Hungary, 1997. Society for Computer
Simulation International.
- 173
-
R. Strasser and S. Selberherr.
Parallel and Distributed TCAD Simulations using Dynamic Load
Balancing.
In Meyer and Biesemans [107], pages 89-92.
- 174
-
P. Su and L.S. Drysdale.
A Comparison of Sequential Delaunay Triangulation Algorithms.
In Proc. 11th Annual Symposium on Computational Geometry, pages
61-70, Vancouver, CANADA, 1995. ACM.
- 175
-
K. Sugihara.
An Intersection Algorithm Based on Delaunay Triangulation.
IEEE Computer Graphics and Applications, 12(2):59-67, 1992.
- 176
-
K. Sugihara and M. Iri.
Construction of the Voronoi Diagram for One Million Generators in
Single-Precision Arithmetic.
Proc.IEEE, 80(9):1471-1484, 1992.
- 177
-
T. Syo, Y. Akiyama, S. Kumashiro, I. Yokota, and S. Asada.
A Triangular Mesh with the Interface Protection Layer Suitable for
the Diffusion Simulation.
In SISPAD'96 [166], pages 173-174.
- 178
-
K. Tanaka, A. Notsu, and H. Matsumoto.
A New Approach to Mesh Generation for Complex 3D Semiconductor Device
Structures.
In SISPAD'96 [166], pages 167-168.
- 179
-
M. Tannemura, T. Ogawa, and N. Ogita.
A New Algorithm for Three-Dimensional Voronoi Tessellation.
J.Comput.Phys., 51(2):191-207, 1983.
- 180
-
T.J. Tautges and S.A. Mitchell.
Whisker Weaving: Invalid Connectivity Resolution and Primal
Construction Algorithm.
In IMRT'95 [143], pages 115-127.
- 181
-
Technology Modeling Associates, Inc., Sunnyvale, California.
TMA Medici, Two-Dimensional Device Simulation Program, Version
4.0 User's Manual, 1997.
- 182
-
Technology Modeling Associates, Inc., Sunnyvale, California.
TMA WorkBench Version 2.2 User's Manual, 1997.
- 183
-
J.F. Thompson.
A General Three-Dimensional Elliptic Grid Generation System on a
Composite Block Structure.
Computer Methods in Applied Mechanics and Engineering,
64:377-411, 1987.
- 184
-
J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin.
Numerical Grid Generation.
North Holland, 1985.
- 185
-
K. Tietzel, A. Bourenkov, and J. Lorenz.
Coupled 3D Process and Device Simulation of Advanced MOSFETs.
In Meyer and Biesemans [107], pages 255-258.
- 186
-
D.F. Watson.
Computing the -Dimensional Delaunay Tessellation with
Application to Voronoi Polytopes.
The Computer Journal, 24(2):167-172, 1981.
- 187
-
N.P. Weatherill and O. Hassan.
Efficient Three-Dimensional Delaunay Triangulation with Automatic
Point Creation and Imposed Boundary Constraints.
Int.J.Numer.Meth.Eng., 37:2005-2039, 1994.
- 188
-
M. Westermann, N. Strecker, P. Regli, and W. Fichtner.
Reliable Solid Modeling for Three-Dimensional Semiconductor Process
and Device Simulation.
In Int. Workshop on Numerical Modeling of Processes and Devices
for Integrated Circuits NUPAD V, pages 49-52, Honolulu, 1994.
- 189
-
J. Xu and L. Zikatanov.
A Monotone Finite Element Scheme for Convection-Diffusion Equations.
Mathematics of Computation, 68(228):1429-1446, 1999.
- 190
-
A. Yamada, K. Shimada, and T. Itoh.
Energy-Minimizing Approach to Meshing Curved Wire-Frame Models.
In IMRT'96 [144], pages 179-191.
- 191
-
M.A. Yerry and M.S. Shephard.
Automatic Three-Dimensional Mesh Generation by the Modified-Octree
Technique.
Int.J.Numer.Meth.Eng., 20:1965-1990, 1984.
- 192
-
Gernot Zankl.
Über die Erzeugung von Gitterstützpunkten in
dreidimensionalen Geometrien.
Diplomarbeit, Technische Universität Wien, 1997.
- 193
-
O.C. Zienkiewicz.
The Finite Element Method.
McGraw-Hill, 1977.
- 194
-
O.C. Zienkiewicz.
Origins, Milestones and Directions of the Finite Element Method -- A
Personal View.
In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical
Analysis, volume IV. Elsevier, 1996.
Peter Fleischmann
2000-01-20