Bibliography

[1]   G. E. Moore. Cramming More Components Onto Integrated Circuits. Electronics, pages 114–117, 1965.

[2]   International Technology Roadmap for Semiconductors: 2013 Edition. http://www.itrs.net, 2013.

[3]   G. I. Bourianoff, P. A. Gargini, and D. E. Nikonov. Research Directions in beyond CMOS Computing. Solid-State Electronics, 51:1426–1431, 2007.

[4]   M. Bohr. The Evolution of Scaling from the Homogeneous Era to the Heterogeneous Era. In 2011 IEEE International Electron Devices Meeting (IEDM), pages 1.1.1–1.1.6, 2011.

[5]   N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan. Leakage Current: Moore’s Law Meets Static Power. Computer, 36:68–75, 2003.

[6]   K. Rupp and S. Selberherr. The Economic Limit to Moore’s Law. Proceedings of the IEEE, 98:351–353, 2010.

[7]   S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger. Spintronics - A Retrospective and Perspective. IBM Journal of Research and Development, 50:101, 2006.

[8]   I. Appelbaum, B. Huang, and D. J. Monsma. Electronic Measurement and Control of Spin Transport in Silicon. Nature, 447:295–298, 2007.

[9]   F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees. Electrical Detection of Spin Precession in a Metallic Mesoscopic Spin Valve. Nature, 416:713–716, 2002.

[10]   S. O. Valenzuela and M. Tinkham. Direct Electronic Measurement of the Spin Hall Effect. Nature, 442:176–179, 2006.

[11]   D. E. Nikonov and I. A. Young. Overview of Beyond-CMOS Devices and a Uniform Methodology for their Benchmarking. Proceedings of the IEEE, 101:1–36, 2013.

[12]   S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A Spin-Based Electronics Vision for the Future. Science, 294:1488–1495, 2001.

[13]   D. D. Awschalom, D. Loss, and N. Samarth. Semiconductor Spintronics and Quantum Computation. Springer-Verlag Berlin Heidelberg, 2002.

[14]   A. Fert. Nobel Lecture: Origin, Development, and Future of Spintronics. Reviews of Modern Physics, 80:1517–1530, 2008.

[15]   M. Johnson. Bipolar Spin Switch. Science, 260:320–323, 1993.

[16]   J. Sinova and I. Zutic. New Moves of the Spintronics Tango. Nature Materials, 11:368–371, 2012.

[17]   M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61:2472–2475, 1988.

[18]   H. Fujimori, S. Mitani, and S. Ohnuma. Tunnel-type GMR in Metal-Nonmetal Granular Alloy Thin Films. Materials Science and Engineering: B, 31:219–223, 1995.

[19]   S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki1, and K. Ando. Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel Junctions. Nature Materials, 3:868–871, 2004.

[20]    S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, and B. Hughes. Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers. Nature Materials, 3:862–867, 2004.

[21]   B. E. Kane. A Silicon-Based Nuclear Spin Quantum Computer. Nature, 393:133–137, 1998.

[22]   D. Loss and D. P. DiVincenzo. Quantum Computation with Quantum Dots. Physical Review A, 57:120–126, 1998.

[23]   W. Gerlach and O. Stern. Der Experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik, 9:349–352, 1922.

[24]   P. M. Tedrow and R. Meservey. Spin Polarization of Electrons Tunneling from Films of Fe, Co, Ni, and Gd. Physical Review B, 7:318–326, 1973.

[25]   M. I. D’yakonov and V. I. Perel’. Spin Relaxation of Conduction Electrons in Noncentrosymetric Semiconductors. Fizika Tverdogo Tela, 13:1382–1397, 1971.

[26]   L. Vorob’ev, E. L. Ivchenko, G. Pikus, I. I. Farbshtein, V. A. Shalygin, and A. V. Shturbin. Optical Activity in Tellurium Induced by a Current. Journal of Experimental and Theoretical Physics Letters, 29:441, 1979.

[27]   M. Julliere. Tunneling between Ferromagnetic Films. Physics Letters A, 54:225–226, 1975.

[28]   A. G. Aronov and G. E. Pikus. Spin Injection in Semiconductors. Fizika i Tekhnika Poluprovodnikov, 10:1177–1180, 1976.

[29]   P. Grünberg and A. Fert. The Discovery of Giant Magnetoresistance (Scientific Background on the Nobel Prize in Physics). http://www.kva.se/Documents/Priser/Nobel/2007/sciback_fy_en_07.pdf, 2007.

[30]   T. Shinjo. Nanomagnetism and Spintronics. Elsevier insights. Elsevier Science, 2013.

[31]   L. Zhu. Spin Injection and Transport in Semiconductor and Metal Nanostructures. PhD thesis, Department of Physics, University of California, San Diego, USA, 2009.

[32]    J. Mathon and A. Umerski. Theory of Tunneling Magnetoresistance in a Junction with a Nonmagnetic Metallic Interlayer. Physics Letters B, 60:1117–1121, 1999.

[33]   J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Physical Review Letters, 74:3273–3276, 1995.

[34]   T. Miyazaki and N. Tezuka. Giant Magnetic Tunneling Effect in Fe/Al2O3/Fe Junction. Journal of Magnetism and Magnetic Materials, 139:L231–L234, 1995.

[35]   J.C. Slonczewski. Current-Driven Excitation of Magnetic Multilayers. Journal of Magnetism and Magnetic Materials, 159:L1–L7, 1996.

[36]   L. Berger. Emission of Spin Waves by a Magnetic Multilayer Traversed by a Current. Physical Review B, 54:9353–9358, 1996.

[37]   W. H. Kautz. Cellular Logic-in-Memory Arrays. IEEE Transactions on Computers, C-18:719–727, 1969.

[38]   H. Ohno, T. Endoh, T. Hanyu, N. Kasai, and S. Ikeda. Magnetic Tunnel Junction for Nonvolatile CMOS Logic. In 2010 IEEE International Electron Devices Meeting (IEDM), pages 9.4.1–9.4.4, 2010.

[39]   M. Natsui, D. Suzuki, N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka, T. Sugibayashi, S. Miura, H. Honjo, K. Kinoshita, S. Ikeda, T. Endoh, H. Ohno, and T. Hanyu. Nonvolatile Logic-in-Memory Array Processor in 90nm MTJ/MOS Achieving 75% Leakage Reduction Using Cycle-Based Power Gating. In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 194–195, 2013.

[40]   H. Mahmoudi. Devices and Circuits for Stateful Logic and Memristive Sensing Applications. PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2014.

[41]   S. Datta and B. Das. Electronic Analog of the Electro-Optic Modulator. Applied Physics Letters, 56:665–667, 1990.

[42]   S. Sugahara and J. Nitta. Spin-Transistor Electronics: An Overview and Outlook. Proceedings of the IEEE, 98:2124–2154, 2010.

[43]   M.K. Hudait, G. Dewey, S. Datta, J.M. Fastenau, J. Kavalieros, W.K. Liu, D. Lubyshev, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau. Heterogeneous Integration of Enhancement Mode In0.7Ga0.3As Quantum Well Transistor on Silicon Substrate using Thin (2μm) Composite Buffer Architecture for High-Speed and Low-Voltage (0.5V) Logic Applications. In 2007 IEEE International Electron Devices Meeting (IEDM), pages 625–628, 2007.

[44]   R. Jansen. Silicon Spintronics. Nature Materials, 11:400–408, 2012.

[45]   F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup. Observation of Coherent Oscillations in a Single Electron Spin. Physical Review Letters, 92:076401, 2004.

[46]   A. Honig and J. Combrisson. Paramagnetic Resonance in As-Doped Silicon. Physical Review, 102:917–918, 1956.

[47]   G. Feher. Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique. Physical Review, 114:1219–1244, 1959.

[48]   G. Lancaster, J. A. van Wyk, and E. E. Schneider. Spin-Lattice Relaxation of Conduction Electrons in Silicon. Proceedings of the Physical Society, 84, 1964.

[49]   I. Žutić, J. Fabian, and S. C. Erwin. Spin Injection and Detection in Silicon. Physical Review Letters, 97:026602, 2006.

[50]   Electrical Properties of Silicon (Si). http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/electric.html, 2015.

[51]   S. Bandyopadhyay and M. Cahay. Electron Spin for Classical Information Processing: a Brief Survey of Spin-Based Logic Devices, Gates and Circuits. Nanotechnology, 20(41):412001, 2009.

[52]   P. Mavropoulos. Spin Injection from Fe into Si(001): Ab initio Calculations and Role of the Si Complex Band Structure. Physical Review B, 78:054446, 2008.

[53]   Y. Song and H. Dery. Analysis of Phonon-Induced Spin Relaxation Processes in Silicon. Physical Review B, 86:085201, 2012.

[54]   B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta. Proposal for an All-Spin Logic Device with Built-in Memory. Nature Nanotechnology, 5:266–270, 2010.

[55]   V. Sverdlov and S. Selberherr. Silicon Spintronics: Progress and Challenges. Physics Reports, 585:15–17, 2015.

[56]   D. J. Lépine. Spin Resonance of Localized and Delocalized Electrons in Phosphorus-Doped Silicon between 20 and 30 K. Physical Review B, 2:2429–2439, 1970.

[57]   B. Huang, D. J. Monsma, and I. Appelbaum. Coherent Spin Transport through a 350 Micron Thick Silicon Wafer. Physical Review Letters, 99:177209, 2007.

[58]   S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, and R. Jansen. Electrical Creation of Spin Polarization in Silicon at Room Temperature. Nature, 462:491–494, 2009.

[59]   C. H. Li, O. M. J. van ’t Erve, and B. T. Jonker. Electrical Injection and Detection of Spin Accumulation in Silicon at 500 K with Magnetic Metal/Silicon Dioxide Contacts. Nature communications, 2:245, 2011.

[60]   J. Li and I. Appelbaum. Modeling Spin Transport in Electrostatically-Gated Lateral-Channel Silicon Devices: Role of Interfacial Spin Relaxation. Physical Review B, 84:165318, 2011.

[61]   J. Li and I. Appelbaum. Lateral Spin Transport through Bulk Silicon. Applied Physics Letters, 100:162408, 2012.

[62]   I. Žutić, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and Applications. Review Modern Physics, 76:323–410, 2004.

[63]   R. J. Elliott. Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors. Physical Review, 96:266–279, 1954.

[64]   Y. Yafet. Conduction Electron Spin Relaxation in the Superconducting State. Physics Letters A, 98:287–290, 1983.

[65]   M. D’yakonov and V. Perel’. Spin Relaxation of Conduction Electrons in Noncentrosymmetric Semiconductors. Soviet Physics Solid State, USSR, 13:3023–3026, 1972.

[66]   A. W. Overhauser. Paramagnetic Relaxation in Metals. Physical Review, 89:689–700, 1953.

[67]   J. L. Cheng, M. W. Wu, and J. Fabian. Theory of the Spin Relaxation of Conduction Electrons in Silicon. Physical Review Letters, 104:016601, 2010.

[68]   J. M. Tang, B. T. Collins, and M. E. Flatte. Electron Spin-Phonon Interaction Symmetries and Tunable Spin Relaxation in Silicon and Germanium. Physical Review B, 85:045202, 2012.

[69]   M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim. Six-Band k p Calculation of the Hole Mobility in Silicon Inversion Layers: Dependence on Surface Orientation, Strain, and Silicon Thickness. Journal of Applied Physics, 94:1079–1095, 2003.

[70]   D. Osintsev, V. Sverdlov, and S. Selberherr. Reduction of Momentum and Spin Relaxation Rate in Strained Thin Silicon Films. In Proceedings of the European Solid-State Device Research Conference (ESSDERC), pages 334–337, 2013.

[71]   P. Li and H. Dery. Spin-Orbit Symmetries of Conduction Electrons in Silicon. Physical Review Letters, 107:107203, 2011.

[72]   V. Sverdlov. Strain-Induced Effects in Advanced MOSFETs. Wien - New York: Springer, 2011.

[73]   C. S. Smith. Piezoresistance Effect in Germanium and Silicon. Physical Review, 94:42–49, 1954.

[74]   H. H. Hall, J. Bardeen, and G. L. Pearson. The Effects of Pressure and Temperature on the Resistance of p-n Junctions in Germanium. Physical Review, 84:129–132, 1951.

[75]   J. Bardeen and W. Shockley. Deformation Potentials and Mobilities in Non-Polar Crystals. Physical Review, 80:72–80, 1950.

[76]   C. Herring and E. Vogt. Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering. Physical Review, 101:944–961, 1956.

[77]   K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H.-S. Wong. Characteristics and Device Design of sub-100 nm Strained Si N- and PMOSFETs. In Digest of Technical Papers. 2002 Symposium on VLSI Technology, 2002, pages 98–99, 2002.

[78]   S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, Chia-Hong Jan, C. Kenyon, J. Klaus, K. Kuhn, Zhiyong Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, Phi Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy. A 90-nm Logic Technology Featuring Strained-Silicon. IEEE Transactions on Electron Devices, 51:1790–1797, 2004.

[79]   K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker, Y. Zhang, M. Steen, and M. Ieong. Fabrication and Mobility Characteristics of Ultra-thin Strained Si Directly on Insulator (SSDOI) MOSFETs. In 2003 IEEE International Electron Devices Meeting (IEDM), pages 3.1.1–3.1.4, 2003.

[80]   F. Andrieu, T. Ernst, O. Faynot, O. Rozeau, Y. Bogumilowicz, J.-M. Hartmann, L. Brévard, A. Toffoli, D. Lafond, B. Ghyselen, F. Fournel, G. Ghibaudo, and S. Deleonibus. Performance and Physics of sub-50 nm Strained Si on Si1-xGex-on-insulator SGOI nMOSFETs. Solid-State Electronics, 50:566–572, 2006.

[81]   D. Esseni. On the Modeling of Surface Roughness Limited Mobility in SOI MOSFETs and its Correlation to the Transistor Effective Field. IEEE Transactions on Electron Devices, 51:394–401, 2004.

[82]   F. Seitz. The Theoretical Constitution of Metallic Lithium. Physical Review, 47:400–412, 1935.

[83]   J. M. Luttinger and W. Kohn. Motion of Electrons and Holes in Perturbed Periodic Fields. Physical Review, 97:869–883, 1955.

[84]   E. O. Kane. Energy Band Structure in p-type Germanium and Silicon. Journal of Physics and Chemistry of Solids, 1:82–99, 1956.

[85]   M. Cardona and F. H. Pollak. Energy-Band Structure of Germanium and Silicon: The k p Method. Physical Review, 142:530–543, 1966.

[86]   G.L. Bir and G.E. Pikus. Symmetry and Strain-Induced Effects in Semiconductors. New York/Toronto: J. Wiley & Sons, 1974.

[87]   T. Ando, Alan B. Fowler, and F. Stern. Electronic Properties of Two-Dimensional Systems. Reviews of Modern Physics, 54:437–672, 1982.

[88]   G. Lampel. Nuclear Dynamic Polarization by Optical Electronic Saturation and Optical Pumping in Semiconductors. Physical Review Letters, 20:491–493, 1968.

[89]   F. Nastos, J. Rioux, M. Strimas-Mackey, Bernardo S. Mendoza, and J. E. Sipe. Full Band Structure LDA and k p Calculations of Optical Spin-Injection. Physical Review B, 76:205113, 2007.

[90]   M. Johnson and R. H. Silsbee. Interfacial Charge-Spin Coupling: Injection and Detection of Spin Magnetization in Metals. Physical Review Letters, 55:1790–1793, 1985.

[91]   M. Johnson and R. H. Silsbee. Thermodynamic Analysis of Interfacial Transport and of the Thermomagnetoelectric System. Physical Review B, 35:4959–4972, 1987.

[92]   M. Johnson and R. H. Silsbee. Electron Spin Injection and Detection at a FerromagneticParamagnetic Interface (invited). Journal of Applied Physics, 63:3934–3939, 1988.

[93]   T. Koga, J. Nitta, H. Takayanagi, and S. Datta. Spin-Filter Device Based on the Rashba Effect Using a Nonmagnetic Resonant Tunneling Diode. Physical Review Letters, 88:126601, 2002.

[94]   M. Shen, S. Saikin, and M. Cheng. Monte Carlo Modeling of Spin Injection Through a Schottky Barrier and Spin Transport in a Semiconductor Quantum Well. Journal of Applied Physics, 96:4319–4325, 2004.

[95]   G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees. Fundamental Obstacle for Electrical Spin Injection from a Ferromagnetic Metal into a Diffusive Semiconductor. Physical Review B, 62:R4790–R4793, 2000.

[96]   E. I. Rashba. Theory of Electrical Spin Injection: Tunnel Contacts as a Solution of the Conductivity Mismatch Problem. Physical Review B, 62:R16267–R16270, 2000.

[97]   A. Fert and H. Jaffrès. Conditions for Efficient Spin Injection from a Ferromagnetic Metal into a Semiconductor. Physical Review B, 64:184420, 2001.

[98]   A. T. Filip, B. H. Hoving, F. J. Jedema, B. J. van Wees, B. Dutta, and S. Borghs. Experimental Search for the Electrical Spin Injection in a Semiconductor. Physical Review B, 62:9996–9999, 2000.

[99]   B. C. Min, K. Motohashi, C. Lodder, and R. Jansen. Tunable Spin-Tunnel Contacts to Silicon using Low-Work-Function Ferromagnets. Nature Materials, 5:871–822, 2006.

[100]   B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, C. H. Li, and P. E. Thompson. Electrical Spin-Injection into Silicon from a Ferromagnetic Metal/Tunnel Barrier Contact. Nature Physics, 3:542–546, 2007.

[101]   V. P. LaBella, D. W. Bullock, Z. Ding, C. Emery, A. Venkatesan, W. F. Oliver, G. J. Salamo, P. M. Thibado, and M. Mortazavi. Spatially Resolved Spin-Injection Probability for Gallium Arsenide. Science, 292:1518–1521, 2001.

[102]   T. Nie, J. Tang, and K. L. Wang. Quest for High-Curie Temperature MnxGe1-x Diluted Magnetic Semiconductors for Room-Temperature Spintronics Applications. Journal of Crystal Growth, 425:279–282, 2015.

[103]    Y. Takamura, K. Hayashi, Y. Shuto, and S. Sugahara. Fabrication of High-Quality CO2 FeSi/SiOxNy/Si(100) Tunnel Contacts Using Radical-Oxynitridation-Formed SiOxNy Barrier for Si-Based Spin Transistors. Journal of Electronic Materials, 41:954–958, 2012.

[104]   T. Suzuki, T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and K. Noguchi. Room-Temperature Electron Spin Transport in a Highly Doped Si Channel. Applied Physics Express, 4:023003, 2011.

[105]    Y. Song and H. Dery. Magnetic-Field-Modulated Resonant Tunneling in Ferromagnetic-Insulator-Nonmagnetic Junctions. Physical Review Letters, 113:047205, 2014.

[106]   K. R. Jeon, H. Saito, S. Yuasa, and R. Jansen. Energy Dispersion of Tunnel Spin Polarization Extracted from Thermal and Electrical Spin Currents. Physical Review B, 91:155305, 2015.

[107]   H. Saito, S. Watanabe, Y. Mineno, S. Sharma, R. Jansen, S. Yuasa, and K. Ando. Electrical Creation of Spin Accumulation in p-type Germanium. Solid-State Communications, 151:1159–1161, 2011.

[108]   K. R. Jeon, B. C. Min, Y. H. Jo, H. S. Lee, I. J. Shin, C. Y. Park, S. Y. Park, and S. C. Shin. Electrical Spin Injection and Accumulation in CoFe/MgO/Ge Contacts at Room Temperature. Physical Review B, 84:165315, 2011.

[109]   A. Jain, L. Louahadj, J. Peiro, J. C. Le Breton, C. Vergnaud, A. Barski, C. Beign, L. Notin, A. Marty, V. Baltz, S. Auffret, E. Augendre, H. Jaffrs, J. M. George, and M. Jamet. Electrical Spin Injection and Detection at Al2O3/n-type Germanium Interface using Three Terminal Geometry. Applied Physics Letters, 99:162102, 2011.

[110]   M. Tran, H. Jaffrès, C. Deranlot, J.-M. George, A. Fert, A. Miard, and A. Lemaître. Enhancement of the Spin Accumulation at the Interface Between a Spin-Polarized Tunnel Junction and a Semiconductor. Physical Review Letters, 102:036601, 2009.

[111]   O. M. J. van ’t Erve, A. L. Friedman, E. Cobas, C. H. Li, J. T. Robinson, and B. T. Jonker. Low-Resistance Spin Injection into Silicon using Graphene Tunnel Barriers. Nature Nanotechnology, 7:737–742, 2012.

[112]   O. Txoperena, Y. Song, L. Qing, M. Gobbi, L. E. Hueso, H. Dery, and F. Casanova. Impurity-Assisted Tunneling Magnetoresistance under a Weak Magnetic Field. Physical Review Letters, 113:146601, 2014.

[113]   M. R. Sears and W. M. Saslow. Spin Accumulation at Ferromagnet/Nonmagnetic Material Interfaces. Physical Review B, 85:014404, 2012.

[114]   R. Hull and INSPEC (Information service). Properties of Crystalline Silicon. EMIS datareviews series. INSPEC, the Institution of Electrical Engineers, 1999.

[115]   The ABC of DFT. http://dft.uci.edu/doc/g1.pdf, 2007.

[116]   S. Datta. Nanoscale Device Modeling: The Green’s Function Method. Superlattices and Microstructures, 28(4):253–259, 2000.

[117]   C. Kittel. Introduction to Solid State Physics. Wiley, 2004.

[118]   M. A. Omar. Elementary Solid State Physics: Principles and Applications. Addison-Wesley Publishing Company, 2007.

[119]   T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake. Effective-Mass Reproducibility of the Nearest-Neighbor sp3s* Models: Analytical Resutls. Physical Review B, 61(7):4102–4107, 1997.

[120]   T. B. Boykin, L. J. Gamble, G. Klimeck, and R. C. Bowden. Valence-Band Warping in Tight-Binding Models. Physical Review B, 59(11):7301–7304, 1999.

[121]   D. Helmholz and L. C. Lew Yan Voon. Warping in the Valence Band of Silicon. Physical Review B, 65(23):233204, 2002.

[122]   J. P. Loehr and D. N. Talwar. Exact Parameter Relations and Effective Masses Within sp3s Zinc-blende Tight-Binding Models. Physical Review B, 55(7):4353–4359, 1997.

[123]   T. B. Boykin, G. Klimeck, and F. Oyafuso. Valence Band Effective-Mass Expressions in the sp3d5s* Empirical Tight-Binding Model Applied to a Si and Ge Parametrization. Physical Review B, 69:115201, 2004.

[124]   E. Wigner and F. Seitz. On the Constitution of Metallic Sodium. Physical Review, 43:804–810, 1933.

[125]   J. C. Slater. An Augmented Plane Wave Method for the Periodic Potential Problem. Physical Review, 92:603–608, 1937.

[126]   C. Herring. A New Method for Calculating Wave Functions in Crystals. Physical Review, 57:1169–1177, 1940.

[127]   Empirical Pseudopotential Method: Theory and Implementation. https://nanohub.org/resources/8999, 2010.

[128]   P. Yu and M. Cardona. Fundamentals of Semiconductors. Springer-Verlag Berlin Heidelberg, 2003.

[129]   D. Osintsev. Modeling Spintronic Effects in Silicon. PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2014.

[130]   Solving the Effective Mass Schrödinger Equation in State-of-the Art Devices. https://nanohub.org/resource_files/lm/SCHRED/schred_theoretical_background.pdf, 2006.

[131]   J. Fabian. Semiconductor Spintronics. Institute of Physics, Slovak Academy of Sciences, 2007.

[132]   C. Galeriu. k p Theory of Semiconductor Nanostructures. PhD thesis, Faculty of the Worcester Polytechnic Institute, USA, 2005.

[133]   V. Borisenko and S. Ossicini. What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology. Wiley, 2013.

[134]   C. C. Lo. Electrical Detection of Spin-Dependent Transport in Silicon. PhD thesis, EECS Department, University of California, Berkeley, USA, 2011.

[135]   G. Dresselhaus. Spin-Orbit Coupling Effects in Zinc Blende Structures. Physical Review, 100:580–586, 1955.

[136]   Y. A. Bychkov and E. I. Rashba. Oscillatory Effects and the Magnetic Susceptibility of Carriers in Inversion Layers. Journal of Physics C: Solid State Physics, 17:6039, 1984.

[137]   P. Boross, B. Dra, A. Kiss, and F. Simon. A Unified Theory of Spin-Relaxation due to Spin-Orbit Coupling in Metals and Semiconductors. Scientific Reports, 3:580–586, 2013.

[138]   V. Sverdlov, J. Ghosh, H. Mahmoudi, A. Makarov, D. Osintsev, T. Windbacher, and S. Selberherr. Modeling Spin-based Electronic Devices. In Proceedings of the 29th International Conference on Microelectronics, pages 27–34, 2014.

[139]   J. H. Davies. The Physics of Low-Dimensional Semiconductors. Cambridge University Press, 1998.

[140]   S. E. Ungersboeck. Advanced Modeling of Strained CMOS Technology. PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2007.

[141]   S. Dhar. Analytical Mobility Modeling for Strained Silicon-Based Devices. PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2007.

[142]   K. Uchida, A. Kinoshita, and M. Saitoh. Carrier Transport in (110) nMOSFETs: Subband Structures, Non-Parabolicity, Mobility Characteristics, and Uniaxial Stress Engineering. In 2006 IEEE International Electron Devices Meeting (IEDM), pages 1–3, 2006.

[143]   S. Dhar, H. Kosina, V. Palankovski, E. Ungersböck, and S. Selberherr. Modeling of Electron Mobility in Strained Si Devices. In Proceedings of the Semiconductor Advances for Future Electronics (SAFE), pages 793–796, 2004.

[144]   M. E. Kurdi, G. Fishman, S. Sauvage, and P. Boucaud. Comparison Between 6-band and 14-band k p Formalisms in SiGe/Si Heterostructures. Physical Review B, 68:165333.1–165333.16, 2003.

[145]   D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, H. Jaouen, and A. Ghetti. Strained Si, Ge, and Si1-xGex Alloys Modeled with a First-Principles-Optimized Full-Zone k p Method. Physical Review B, 74:195208, 2006.

[146]   T. Windbacher. Engineering Gate Stacks for Field-Effect Transistors. PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2010.

[147]   Y. Song. Theory of Intrinsic Spin-Dependent Transport in Semiconductors and Two-Dimensional Membranes. PhD thesis, Dept. of Physics and Astronomy, University of Rochester, USA, 2013.

[148]   T. Windbacher, V. Sverdlov, O. Baumgartner, and S. Selberherr. Electron Subband Structure in Strained Silicon UTB Films from the Hensel-Hasegawa-Nakayama Model - Part 1 Analytical Consideration and Strain-Induced Valley Splitting. Solid-State Electronics, 54:137–142, 2010.

[149]   J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Injection Direction Sensitive Spin Lifetime Model in a Strained Thin Silicon Film. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 277–280, 2015.

[150]   D. Osintsev, V. Sverdlov, N. Neophytou, and S. Selberherr. Valley Splitting and Spin Lifetime Enhancement in Strained Thin Silicon Films. In Proceedings of the 17th International Workshop on Computational Electronics (IWCE), pages 1–4, 2014.

[151]   D. Osintsev, O. Baumgartner, Z. Stanojevic, V. Sverdlov, and S. Selberherr. Subband Splitting and Surface Roughness Induced Spin Relaxation in (001) Silicon SOI MOSFETs. Solid-State Electronics, 90:34–38, 2013.

[152]   V. Sverdlov, J. Ghosh, D. Osintsev, and S. Selberherr. Modeling Silicon Spintronics. Recent Advances in Mathematical Methods in Applied Sciences, 32:195–198, 2014.

[153]   J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Dependence of Spin Lifetime on Spin Injection Orientation in Strained Silicon Films. In Proceedings of the Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pages 285–288, 2015.

[154]   J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Variation of Spin Lifetime with Spin Injection Orientation in Strained Thin Silicon Films. ECS Transactions, 66:233–240, 2015.

[155]   J. M. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, 2001.

[156]   H. Ehrenreich and A. W. Overhauser. Scattering of Holes by Phonons in Germanium. Physical Review, 104:331–342, 1956.

[157]   J. M. Hinckley and J. Singh. Monte Carlo Studies of Ohmic Hole Mobility in Silicon and Germanium: Examination of the Optical Phonon Deformation Potential. Journal of Applied Physics, 76:4192–4200, 1994.

[158]   C. Jacoboni and L. Reggiani. The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials. Reviews of Modern Physics, 55:645–705, 1983.

[159]   H. Jang and I. Appelbaum. Spin Polarized Electron Transport near the Si/SiO2 Interface. Physical Review Letters, 103:117202, 2009.

[160]   D. Osintsev, V. Sverdlov, and S. Selberherr. Influence of Surface Roughness Scattering on Spin Lifetime in Silicon. In Book of Abstracts of the 16th International Workshop on Computational Electronics (IWCE 2013), pages 76–77, 2013.

[161]    J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Intersubband Spin Relaxation Reduction and Spin Lifetime Enhancement by Strain in SOI Structures. Microelectronic Engineering, 147:89–91, 2015.

[162]   H. Dery, Y. Song, P. Li, and I. Žutić. Silicon Spin Communication. Applied Physics Letters, 99:082502, 2011.

[163]   D. Osintsev, V. Sverdlov, and S. Selberherr. Influence of the Valley Degeneracy on Spin Relaxation in Thin Silicon Films. In Proceedings of the 14th International Conference on Ultimate Integration on Silicon (ULIS), pages 221–224, 2013.

[164]   E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr. The Effect of General Strain on the Band Structure and Electron Mobility of Silicon. IEEE Transactions on Electron Devices, 54:2183–2190, 2007.

[165]   M. V. Fischetti and S. E. Laux. Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys. Journal of Applied Physics, 80(4):2234–2252, 1996.

[166]   J. Shah. Hot Carriers in Semiconductor Nanostructures: Physics and Applications. Academic Press, 1992.

[167]   D. Rideau, M. Feraille, M. Michaillat, Y. M. Niquet, C. Tavernier, and H. Jaouen. On the Validity of the Effective Mass Approximation and the Luttinger k p Model in Fully Depleted SOI MOSFETs. Solid-State Electronics, 53:452–461, 2009.

[168]   T. B. Boykin, G. Klimeck, M. A. Eriksson, M. Friesen, S. N. Coppersmith, P. von Allmen, F. Oyafuso, and S. Lee. Valley Splitting in Strained Silicon Quantum wells. Applied Physics Letters, 84:115–117, 2004.

[169]   M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko. Spin and Valley-Orbit Splittings in SiGe/Si Heterostructures. Physical Review B, 73:235334, 2006.

[170]   D. Osintsev, V. Sverdlov, N. Neophytou, and S. Selberherr. Valley Splitting and Spin Lifetime Enhancement in Strained Silicon Heterostructures. Proceedings of the International Winterschool on New Developments in Solid State Physics, pages 88–89, 2014.

[171]   J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Spin Lifetime Dependence on Valley Splitting in Thin Silicon Films. In Book of Abstracts of the 18th International Workshop on Computational Electronics (IWCE), pages 35–36, 2015.

[172]   D. Osintsev, V. Sverdlov, T. Windbacher, and S. Selberherr. Increasing Mobility and Spin Lifetime with Shear Strain in Thin Silicon Films. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pages 193–196, 2014.

[173]   Z. G. Yu and M. E. Flatté. Electric-field Dependent Spin Diffusion and Spin Injection into Semiconductors. Physical Review B, 66:201202, 2002.

[174]   Y. Song and H. Dery. Spin Transport Theory in Ferromagnet/Semiconductor Systems with Noncollinear Magnetization Configurations. Physical Review B, 81:045321, 2010.

[175]   A. M. Roy, D. E. Nikonov, and K. C. Saraswat. Simulation of Spin MOSFETs. Proc. SPIE, 8100:81001J–81001J–6, 2011.

[176]   J. M. Kikkawa and D. D. Awschalom. Lateral Drag of Spin Coherence in Gallium Arsenide. Nature (London), 397:139, 1999.

[177]   I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom. Persistent Sourcing of Coherent Spins for Multifunctional Spintronics. Nature (London), 411:770, 2001.

[178]   W. V. Roosbroeck. Theory of the Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell System Technical Journal, 29:560–607, 1950.

[179]   B. V. Zeghbroeck. Principles of Semiconductor Devices. http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_6.htm, 2011.

[180]   B. V. Zeghbroeck. Principles of Semiconductor Devices. http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm, 2011.

[181]   V. Zayets. Spin and Charge Transport in Materials with Spin-Dependent Conductivity. Physical Review B, 86:174415, 2012.

[182]   S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer Vienna, 1984.

[183]   T. Simlinger. Simulation von Heterostruktur-Feldeffekttransistoren. PhD thesis, Fakultät für Elektrotechnik, Technischen Universität Wien, Austria, 1996.

[184]   T. Ayalew. SiC Semiconductor Devices Technology, Modeling, and Simulation. PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2004.

[185]   M. Pourfath. Numerical Study of Quantum Transport in Carbon Nanotube Based Transistors. PhD thesis, Fakultät f¨r  Elektrotechnik und Informationstechnik, Technischen Universität Wien, Austria, 2007.

[186]   D. L. Scharfetter and H. K. Gummel. Large-Signal Analysis of a Silicon Read Diode Oscillator. IEEE Transactions on Electron Devices, 16:64–77, 1969.

[187]   C. Fischer. Bauelementsimulation in einer Computergestützten Entwurfsumgebung. PhD thesis, Fakultät für Elektrotechnik, Technischen Universität Wien, Austria, 1994.

[188]   D. Vasileska, S. M. Goodnick, and G. Klimeck. Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC Press Online, 2010.

[189]   B. V. Zeghbroeck. Principles of Semiconductor Devices. http://ecee.colorado.edu/~bart/book/glossary.htm, 2011.

[190]   J. Ghosh, V. Sverdlov, and S. Selberherr. Spin Diffusion and the Role of Screening Effects in Semiconductors. In Proceedings of the 17th International Workshop on Computational Electronics (IWCE), pages 1–4, 2014.

[191]   Y. V. Pershin and M. D. Ventra. Spin Blockade at Semiconductor/Ferromagnet Junctions. Physical Review B, 75:193301, 2007.

[192]   J. Ghosh, V. Sverdlov, T. Windbacher, and S. Selberherr. Spin Injection and Diffusion in Silicon Based Devices from a Space Charge Layer. Journal of Applied Physics, 115(17):17C503–1–17C503–3, 2014.

[193]   J. Ghosh, T. Windbacher, V. Sverdlov, and S. Selberherr. Spin Injection in a Semiconductor Through a Space-Charge Layer. Solid-State Electronics, 101:116–121, 2014.