[1] G. E. Moore. Cramming More Components Onto Integrated
Circuits.
[2] International Technology Roadmap for Semiconductors: 2013
Edition.
[3] G. I. Bourianoff, P. A. Gargini, and D. E. Nikonov. Research
Directions in beyond CMOS Computing.
[4] M. Bohr. The Evolution of Scaling from the Homogeneous Era to
the Heterogeneous Era. In
[5] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S.
Hu, M. J. Irwin, M. Kandemir, and V. Narayanan. Leakage Current:
Moore’s Law Meets Static Power.
[6] K. Rupp and S. Selberherr. The Economic Limit to Moore’s Law.
[7] S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger. Spintronics
- A Retrospective and Perspective.
[8] I. Appelbaum, B. Huang, and D. J. Monsma. Electronic
Measurement and Control of Spin Transport in Silicon.
[9] F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and
B. J. van Wees. Electrical Detection of Spin Precession in a Metallic
Mesoscopic Spin Valve.
[10] S. O. Valenzuela and M. Tinkham. Direct Electronic Measurement
of the Spin Hall Effect.
[11] D. E. Nikonov and I. A. Young. Overview of Beyond-CMOS
Devices and a Uniform Methodology for their Benchmarking.
[12] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,
S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger. Spintronics: A Spin-Based Electronics Vision for the Future.
[13] D. D. Awschalom, D. Loss, and N. Samarth.
[14] A. Fert. Nobel Lecture: Origin, Development, and Future of
Spintronics.
[15] M. Johnson. Bipolar Spin Switch.
[16] J. Sinova and I. Zutic. New Moves of the Spintronics Tango.
[17] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau,
F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas.
Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices.
[18] H. Fujimori, S. Mitani, and S. Ohnuma. Tunnel-type GMR in
Metal-Nonmetal Granular Alloy Thin Films.
[19] S. Yuasa, T. Nagahama,
A. Fukushima, Y. Suzuki1, and K. Ando. Giant Room-Temperature
Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel
Junctions.
[20]
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, and B. Hughes.
Giant Tunnelling Magnetoresistance at Room Temperature with MgO
(100) Tunnel Barriers.
[21] B. E. Kane. A Silicon-Based Nuclear Spin Quantum Computer.
[22] D. Loss and D. P. DiVincenzo. Quantum Computation with
Quantum Dots.
[23] W. Gerlach and O. Stern. Der Experimentelle Nachweis der
Richtungsquantelung im Magnetfeld.
[24] P. M. Tedrow and R. Meservey. Spin Polarization of Electrons
Tunneling from Films of Fe, Co, Ni, and Gd.
[25] M. I. D’yakonov and V. I. Perel’. Spin Relaxation of Conduction
Electrons in Noncentrosymetric Semiconductors.
[26] L. Vorob’ev, E. L. Ivchenko, G. Pikus, I. I. Farbshtein, V. A.
Shalygin, and A. V. Shturbin. Optical Activity in Tellurium Induced
by a Current.
[27] M. Julliere. Tunneling between Ferromagnetic Films.
[28] A. G. Aronov and G. E. Pikus. Spin Injection in Semiconductors.
[29] P. Grünberg and A. Fert. The Discovery
of Giant Magnetoresistance (Scientific
Background on the Nobel Prize in Physics).
[30] T. Shinjo.
[31] L. Zhu.
[32]
J. Mathon and A. Umerski. Theory of Tunneling Magnetoresistance
in a Junction with a Nonmagnetic Metallic Interlayer.
[33] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey.
Large Magnetoresistance at Room Temperature in Ferromagnetic Thin
Film Tunnel Junctions.
[34] T. Miyazaki and N. Tezuka. Giant Magnetic Tunneling Effect in
Fe/Al
[35] J.C. Slonczewski. Current-Driven Excitation of Magnetic
Multilayers.
[36] L. Berger. Emission of Spin Waves by a Magnetic Multilayer
Traversed by a Current.
[37] W. H. Kautz. Cellular Logic-in-Memory Arrays.
[38] H. Ohno, T. Endoh, T. Hanyu, N. Kasai, and S. Ikeda. Magnetic
Tunnel Junction for Nonvolatile CMOS Logic. In
[39] M. Natsui, D. Suzuki,
N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka, T. Sugibayashi,
S. Miura, H. Honjo, K. Kinoshita, S. Ikeda, T. Endoh, H. Ohno, and
T. Hanyu. Nonvolatile Logic-in-Memory Array Processor in 90nm
MTJ/MOS Achieving 75% Leakage Reduction Using Cycle-Based
Power Gating. In
[40] H. Mahmoudi.
[41] S. Datta and B. Das. Electronic Analog of the Electro-Optic
Modulator.
[42] S. Sugahara and J. Nitta. Spin-Transistor Electronics: An
Overview and Outlook.
[43] M.K. Hudait, G. Dewey, S. Datta, J.M. Fastenau, J. Kavalieros,
W.K.
Liu, D. Lubyshev, R. Pillarisetty, W. Rachmady, M. Radosavljevic,
T. Rakshit, and R. Chau. Heterogeneous Integration of Enhancement
Mode In
[44] R. Jansen. Silicon Spintronics.
[45] F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup.
Observation of Coherent Oscillations in a Single Electron Spin.
[46] A. Honig and J. Combrisson. Paramagnetic Resonance in
As-Doped Silicon.
[47] G. Feher. Electron Spin Resonance Experiments on Donors in
Silicon. I. Electronic Structure of Donors by the Electron Nuclear
Double Resonance Technique.
[48] G. Lancaster, J. A. van Wyk, and E. E. Schneider. Spin-Lattice
Relaxation of Conduction Electrons in Silicon.
[49] I. Žutić, J. Fabian, and S. C. Erwin. Spin Injection and Detection
in Silicon.
[50] Electrical Properties of Silicon (Si).
[51] S. Bandyopadhyay and M. Cahay. Electron Spin for Classical
Information Processing: a Brief Survey of Spin-Based Logic Devices,
Gates and Circuits.
[52] P. Mavropoulos. Spin Injection from Fe into Si(001): Ab initio
Calculations and Role of the Si Complex Band Structure.
[53] Y. Song and H. Dery. Analysis of Phonon-Induced Spin Relaxation
Processes in Silicon.
[54] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta. Proposal
for an All-Spin Logic Device with Built-in Memory.
[55] V. Sverdlov and S. Selberherr. Silicon Spintronics: Progress and
Challenges.
[56] D. J. Lépine. Spin Resonance of Localized and Delocalized
Electrons in Phosphorus-Doped Silicon between 20 and 30
[57] B. Huang, D. J. Monsma, and I. Appelbaum. Coherent Spin
Transport through a 350 Micron Thick Silicon Wafer.
[58] S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, and R.
Jansen. Electrical Creation of Spin Polarization in Silicon at Room
Temperature.
[59] C. H. Li, O. M. J. van ’t Erve, and B. T. Jonker. Electrical
Injection and Detection of Spin Accumulation in Silicon at 500 K with
Magnetic Metal/Silicon Dioxide Contacts.
[60] J. Li and I. Appelbaum. Modeling Spin Transport in
Electrostatically-Gated Lateral-Channel Silicon Devices: Role of
Interfacial Spin Relaxation.
[61] J. Li and I. Appelbaum. Lateral Spin Transport through Bulk
Silicon.
[62] I. Žutić, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals
and Applications.
[63] R. J. Elliott. Theory of the Effect of Spin-Orbit Coupling on
Magnetic Resonance in Some Semiconductors.
[64] Y. Yafet. Conduction Electron Spin Relaxation in the
Superconducting State.
[65] M. D’yakonov and V. Perel’. Spin Relaxation of Conduction
Electrons in Noncentrosymmetric Semiconductors.
[66] A. W. Overhauser. Paramagnetic Relaxation in Metals.
[67] J. L. Cheng, M. W. Wu, and J. Fabian. Theory of the Spin
Relaxation of Conduction Electrons in Silicon.
[68] J. M. Tang, B. T. Collins, and M. E. Flatte. Electron
Spin-Phonon Interaction Symmetries and Tunable Spin Relaxation in
Silicon and Germanium.
[69] M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim.
Six-Band
[70] D. Osintsev, V. Sverdlov, and S. Selberherr. Reduction of
Momentum and Spin Relaxation Rate in Strained Thin Silicon Films.
In
[71] P. Li and H. Dery. Spin-Orbit Symmetries of Conduction
Electrons in Silicon.
[72] V. Sverdlov.
[73] C. S. Smith. Piezoresistance Effect in Germanium and Silicon.
[74] H. H. Hall, J. Bardeen, and G. L. Pearson. The Effects of Pressure
and Temperature on the Resistance of
[75] J. Bardeen and W. Shockley. Deformation Potentials and
Mobilities in Non-Polar Crystals.
[76] C. Herring and E. Vogt. Transport and Deformation-Potential
Theory for Many-Valley Semiconductors with Anisotropic Scattering.
[77] K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee,
A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca,
P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and
H.-S. Wong. Characteristics and Device Design of sub-100 nm Strained
Si N- and PMOSFETs. In
[78] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler,
R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, Chia-Hong Jan,
C. Kenyon,
J. Klaus, K. Kuhn, Zhiyong Ma, B. Mcintyre, K. Mistry, A. Murthy,
B. Obradovic, R. Nagisetty, Phi Nguyen, S. Sivakumar, R. Shaheed,
L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy. A 90-nm
Logic Technology Featuring Strained-Silicon.
[79] K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott,
N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi,
B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker,
Y. Zhang, M. Steen, and M. Ieong. Fabrication and Mobility
Characteristics of Ultra-thin Strained Si Directly on Insulator (SSDOI)
MOSFETs. In
[80] F. Andrieu, T. Ernst, O. Faynot, O. Rozeau, Y. Bogumilowicz,
J.-M. Hartmann, L. Brévard, A. Toffoli, D. Lafond, B. Ghyselen,
F. Fournel, G. Ghibaudo, and S. Deleonibus. Performance and
Physics of sub-50 nm Strained Si on Si
[81] D. Esseni. On the Modeling of Surface Roughness Limited Mobility
in SOI MOSFETs and its Correlation to the Transistor Effective Field.
[82] F. Seitz. The Theoretical Constitution of Metallic Lithium.
[83] J. M. Luttinger and W. Kohn. Motion of Electrons and Holes in
Perturbed Periodic Fields.
[84] E. O. Kane. Energy Band Structure in p-type Germanium and
Silicon.
[85] M. Cardona and F. H. Pollak. Energy-Band Structure of
Germanium and Silicon: The
[86] G.L. Bir and G.E. Pikus.
[87] T. Ando, Alan B. Fowler, and F. Stern. Electronic Properties of
Two-Dimensional Systems.
[88] G. Lampel. Nuclear Dynamic Polarization by Optical Electronic
Saturation and Optical Pumping in Semiconductors.
[89] F. Nastos, J. Rioux, M. Strimas-Mackey, Bernardo S. Mendoza,
and J. E. Sipe. Full Band Structure LDA and
[90] M. Johnson and R. H. Silsbee. Interfacial Charge-Spin Coupling:
Injection and Detection of Spin Magnetization in Metals.
[91] M. Johnson and R. H. Silsbee. Thermodynamic Analysis of
Interfacial Transport and of the Thermomagnetoelectric System.
[92] M. Johnson and R. H. Silsbee. Electron Spin Injection and
Detection at a FerromagneticParamagnetic Interface (invited).
[93] T. Koga, J. Nitta, H. Takayanagi, and S. Datta. Spin-Filter
Device Based on the Rashba Effect Using a Nonmagnetic Resonant
Tunneling Diode.
[94] M. Shen, S. Saikin, and M. Cheng. Monte Carlo Modeling
of Spin Injection Through a Schottky Barrier and Spin Transport
in a Semiconductor Quantum Well.
[95] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and
B. J. van Wees. Fundamental Obstacle for Electrical Spin Injection
from a Ferromagnetic Metal into a Diffusive Semiconductor.
[96] E. I. Rashba. Theory of Electrical Spin Injection: Tunnel Contacts
as a Solution of the Conductivity Mismatch Problem.
[97] A. Fert and H. Jaffrès. Conditions for Efficient Spin Injection
from a Ferromagnetic Metal into a Semiconductor.
[98] A. T. Filip, B. H. Hoving, F. J. Jedema, B. J. van Wees,
B. Dutta, and S. Borghs. Experimental Search for the Electrical Spin
Injection in a Semiconductor.
[99] B. C.
Min, K. Motohashi, C. Lodder, and R. Jansen. Tunable Spin-Tunnel
Contacts to Silicon using Low-Work-Function Ferromagnets.
[100] B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, C. H. Li, and P. E.
Thompson. Electrical Spin-Injection into Silicon from a Ferromagnetic
Metal/Tunnel Barrier Contact.
[101] V. P. LaBella, D. W. Bullock, Z. Ding, C. Emery, A. Venkatesan,
W. F. Oliver, G. J. Salamo, P. M. Thibado, and M. Mortazavi.
Spatially Resolved Spin-Injection Probability for Gallium Arsenide.
[102] T. Nie, J. Tang, and K. L. Wang. Quest for High-Curie
Temperature Mn
[103]
Y. Takamura, K. Hayashi, Y. Shuto, and S. Sugahara. Fabrication
of High-Quality CO
[104] T. Suzuki, T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and
K. Noguchi. Room-Temperature Electron Spin Transport in a Highly
Doped Si Channel.
[105]
Y. Song and H. Dery. Magnetic-Field-Modulated Resonant Tunneling
in Ferromagnetic-Insulator-Nonmagnetic Junctions.
[106] K. R. Jeon, H. Saito, S. Yuasa, and R. Jansen. Energy Dispersion
of Tunnel Spin Polarization Extracted from Thermal and Electrical
Spin Currents.
[107] H. Saito, S. Watanabe, Y. Mineno, S. Sharma, R. Jansen, S. Yuasa,
and K. Ando. Electrical Creation of Spin Accumulation in p-type
Germanium.
[108] K. R. Jeon, B. C. Min, Y. H. Jo, H. S. Lee, I. J. Shin, C. Y. Park,
S. Y. Park, and S. C. Shin. Electrical Spin Injection and Accumulation
in CoFe/MgO/Ge Contacts at Room Temperature.
[109] A. Jain, L. Louahadj, J. Peiro, J. C. Le Breton, C. Vergnaud, A.
Barski, C. Beign, L. Notin, A. Marty, V. Baltz, S. Auffret, E. Augendre,
H. Jaffrs, J. M. George, and M. Jamet. Electrical Spin Injection and
Detection at Al
[110] M. Tran, H. Jaffrès, C. Deranlot, J.-M.
George, A. Fert, A. Miard, and A. Lemaître. Enhancement of the
Spin Accumulation at the Interface Between a Spin-Polarized Tunnel
Junction and a Semiconductor.
[111] O. M. J. van ’t Erve, A. L. Friedman, E. Cobas, C. H. Li, J. T.
Robinson, and B. T. Jonker. Low-Resistance Spin Injection into Silicon
using Graphene Tunnel Barriers.
[112] O. Txoperena, Y. Song, L. Qing,
M. Gobbi, L. E. Hueso, H. Dery, and F. Casanova. Impurity-Assisted
Tunneling Magnetoresistance under a Weak Magnetic Field.
[113] M. R. Sears and W. M. Saslow. Spin Accumulation at
Ferromagnet/Nonmagnetic Material Interfaces.
[114] R. Hull and INSPEC (Information service).
[115] The ABC of DFT.
[116] S. Datta. Nanoscale Device Modeling: The Green’s Function
Method.
[117] C. Kittel.
[118] M. A. Omar.
[119] T. B. Boykin, G. Klimeck, R. C. Bowen, and R. Lake.
Effective-Mass Reproducibility of the Nearest-Neighbor
[120] T. B. Boykin, L. J. Gamble, G. Klimeck, and R. C. Bowden.
Valence-Band Warping in Tight-Binding Models.
[121] D. Helmholz and L. C. Lew Yan Voon. Warping in the Valence
Band of Silicon.
[122] J. P. Loehr and D. N. Talwar. Exact Parameter Relations
and Effective Masses Within
[123] T. B. Boykin, G. Klimeck, and F. Oyafuso. Valence Band
Effective-Mass Expressions in the
[124] E. Wigner and F. Seitz. On the Constitution of Metallic Sodium.
[125] J. C. Slater. An Augmented Plane Wave Method for the Periodic
Potential Problem.
[126] C. Herring. A New Method for Calculating Wave Functions in
Crystals.
[127] Empirical Pseudopotential Method: Theory and Implementation.
[128] P. Yu and M. Cardona.
[129] D. Osintsev.
[130] Solving the Effective Mass Schrödinger
Equation in State-of-the Art Devices.
[131] J. Fabian.
[132] C. Galeriu.
[133] V. Borisenko and S. Ossicini.
[134] C. C. Lo.
[135] G. Dresselhaus. Spin-Orbit Coupling Effects in Zinc Blende
Structures.
[136] Y. A. Bychkov and E. I. Rashba. Oscillatory Effects and the
Magnetic Susceptibility of Carriers in Inversion Layers.
[137] P. Boross, B. Dra, A. Kiss, and F. Simon. A Unified Theory
of Spin-Relaxation due to Spin-Orbit Coupling in Metals and
Semiconductors.
[138] V. Sverdlov, J. Ghosh, H. Mahmoudi, A. Makarov, D. Osintsev,
T. Windbacher, and S. Selberherr. Modeling Spin-based Electronic
Devices. In
[139] J. H. Davies.
[140] S. E. Ungersboeck.
[141] S. Dhar.
[142] K. Uchida, A. Kinoshita, and M. Saitoh. Carrier Transport in
(110) nMOSFETs: Subband Structures, Non-Parabolicity, Mobility
Characteristics, and Uniaxial Stress Engineering. In
[143] S. Dhar, H. Kosina, V. Palankovski,
E. Ungersböck, and S. Selberherr. Modeling of Electron Mobility in
Strained Si Devices. In
[144] M. E. Kurdi, G. Fishman, S. Sauvage, and P. Boucaud.
Comparison Between 6-band and 14-band
[145] D. Rideau, M. Feraille, L. Ciampolini,
M. Minondo, C. Tavernier, H. Jaouen, and A. Ghetti. Strained Si,
Ge, and Si
[146] T. Windbacher.
[147] Y. Song.
[148] T. Windbacher, V. Sverdlov, O. Baumgartner, and S. Selberherr.
Electron Subband Structure in Strained Silicon UTB Films from the
Hensel-Hasegawa-Nakayama Model - Part 1 Analytical Consideration
and Strain-Induced Valley Splitting.
[149] J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Injection
Direction Sensitive Spin Lifetime Model in a Strained Thin Silicon
Film. In
[150] D. Osintsev, V. Sverdlov, N. Neophytou, and S. Selberherr.
Valley Splitting and Spin Lifetime Enhancement in Strained Thin
Silicon Films. In
[151] D. Osintsev, O. Baumgartner, Z. Stanojevic, V. Sverdlov, and
S. Selberherr. Subband Splitting and Surface Roughness Induced Spin
Relaxation in (001) Silicon SOI MOSFETs.
[152] V. Sverdlov, J. Ghosh, D. Osintsev, and S. Selberherr. Modeling
Silicon Spintronics.
[153] J. Ghosh, D. Osintsev,
V. Sverdlov, and S. Selberherr. Dependence of Spin Lifetime on Spin
Injection Orientation in Strained Silicon Films. In
[154] J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Variation
of Spin Lifetime with Spin Injection Orientation in Strained Thin
Silicon Films.
[155] J. M. Ziman.
[156] H. Ehrenreich and A. W. Overhauser. Scattering of Holes by
Phonons in Germanium.
[157] J. M. Hinckley and J. Singh. Monte Carlo Studies of Ohmic
Hole Mobility in Silicon and Germanium: Examination of the
Optical Phonon Deformation Potential.
[158] C. Jacoboni and L. Reggiani. The Monte Carlo Method for the
Solution of Charge Transport in Semiconductors with Applications to
Covalent Materials.
[159] H. Jang and I. Appelbaum. Spin Polarized Electron Transport
near the Si/SiO
[160] D. Osintsev, V. Sverdlov, and S. Selberherr. Influence of Surface
Roughness Scattering on Spin Lifetime in Silicon. In
[161]
J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Intersubband
Spin Relaxation Reduction and Spin Lifetime Enhancement by Strain
in SOI Structures.
[162] H. Dery, Y. Song, P. Li, and I. Žutić. Silicon Spin
Communication.
[163] D. Osintsev, V. Sverdlov, and S. Selberherr. Influence of the
Valley Degeneracy on Spin Relaxation in Thin Silicon Films.
In
[164] E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina,
and S. Selberherr. The Effect of General Strain on the Band Structure
and Electron Mobility of Silicon.
[165] M. V. Fischetti and S. E. Laux. Band Structure, Deformation
Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys.
[166] J. Shah.
[167] D. Rideau, M. Feraille, M. Michaillat, Y. M.
Niquet, C. Tavernier, and H. Jaouen. On the Validity of the Effective
Mass Approximation and the Luttinger
[168] T. B. Boykin, G. Klimeck, M. A. Eriksson, M. Friesen, S. N.
Coppersmith, P. von Allmen, F. Oyafuso, and S. Lee. Valley Splitting
in Strained Silicon Quantum wells.
[169] M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko. Spin and
Valley-Orbit Splittings in SiGe/Si Heterostructures.
[170] D. Osintsev, V. Sverdlov, N. Neophytou, and S. Selberherr.
Valley Splitting and Spin Lifetime Enhancement in Strained Silicon
Heterostructures.
[171] J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Spin
Lifetime Dependence on Valley Splitting in Thin Silicon Films. In
[172] D. Osintsev, V. Sverdlov, T. Windbacher, and S. Selberherr.
Increasing Mobility and Spin Lifetime with Shear Strain in Thin Silicon
Films. In
[173] Z. G. Yu and M. E. Flatté. Electric-field Dependent Spin Diffusion
and Spin Injection into Semiconductors.
[174] Y. Song and H. Dery. Spin Transport Theory in
Ferromagnet/Semiconductor Systems with Noncollinear Magnetization
Configurations.
[175] A. M. Roy, D. E. Nikonov, and K. C. Saraswat. Simulation of
Spin MOSFETs.
[176] J. M. Kikkawa and D. D. Awschalom. Lateral Drag of Spin
Coherence in Gallium Arsenide.
[177] I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom.
Persistent Sourcing of Coherent Spins for Multifunctional Spintronics.
[178] W. V. Roosbroeck. Theory of the Flow of Electrons and Holes in
Germanium and Other Semiconductors.
[179] B. V. Zeghbroeck. Principles of Semiconductor Devices.
[180] B. V. Zeghbroeck. Principles of Semiconductor Devices.
[181] V. Zayets. Spin and Charge Transport in Materials with
Spin-Dependent Conductivity.
[182] S. Selberherr.
[183] T. Simlinger.
[184] T. Ayalew.
[185] M. Pourfath.
[186] D. L. Scharfetter and H. K. Gummel. Large-Signal Analysis of a
Silicon Read Diode Oscillator.
[187] C. Fischer.
[188] D. Vasileska, S. M. Goodnick, and G. Klimeck.
[189] B. V. Zeghbroeck. Principles of Semiconductor Devices.
[190] J. Ghosh, V. Sverdlov, and S. Selberherr. Spin Diffusion and the
Role of Screening Effects in Semiconductors. In
[191] Y. V. Pershin and M. D. Ventra. Spin Blockade at
Semiconductor/Ferromagnet Junctions.
[192] J. Ghosh, V. Sverdlov, T. Windbacher, and S. Selberherr. Spin
Injection and Diffusion in Silicon Based Devices from a Space Charge
Layer.
[193] J. Ghosh, T. Windbacher, V. Sverdlov, and S. Selberherr. Spin
Injection in a Semiconductor Through a Space-Charge Layer.