Bibliography

[1]   S. Rauch and G. L. Rosa, “CMOS Hot Carrier: From Physics to End Of Life Projections, and Qualification,” in Proc.IRPS, 2010.

[2]   A. Bravaix and V. Huard, “Hot-Carrier Degradation Issues in Advanced CMOS Nodes,” in Proc.ESREF, 2010.

[3]   A. Acovic, G. L. Rosa, and Y. Sun, “A Review of Hot Carrier Degradation Mechanisms in MOSFETs,” Microelectron.Eng., vol. 36, no. 7/8, pp. 845–869, 1996.

[4]   K. Schuegraf and C.Hu, “Reliability of Thin SiO2  ,” Semicond.Sci.Technol., vol. 9, no. 5, pp. 989–1004, 1994.

[5]   A.Ghetti, “Gate Oxide Reliability: Physical and Computational Models,” in Predictive Simulation of Semiconductor Processing: Status and Challenges (J.Dabrowski and E.R.Weber, eds.), pp. 201–258, Springer-Verlag, 2004.

[6]   S. Tan, T. Chen, J. Soon, K. Loh, C. Ang, and L. Chan, “Nitrogen-Enhanced Negative Bias Temperature Instability: An Insight by Experiment and First-Principle Calculations,” Appl.Phys.Lett., vol. 82, no. 12, pp. 1881–1883, 2003.

[7]    K. Sakuma, D. Matsushita, K. Muraoka, and Y. Mitani, “Investigation of Nitrogen-Originated NBTI Mechanism in SiON  with High-Nitrogen Concentration,” in Proc.IRPS, pp. 454 – 460, 2006.

[8]   P. Lenahan and J. Conley, “What Can Electron Paramagnetic Resonance Tell Us about the Si∕SiO2  System?,” J.Vac.Sci.Technol.B, vol. 16, no. 4, pp. 2134–2153, 1998.

[9]   J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, “Direct Observation of the Structure of Defect Centers Involved in the Negative Bias Temperature Instability,” Appl.Phys.Lett., vol. 87, no. 20, p. 204106, 2005.

[10]   A. Stesmans, “Passivation of Pb0  and Pb1  Interface Defects in Thermal (100)Si∕SiO2  with Molecular Hydrogen,” Appl.Phys.Lett., vol. 68, no. 15, pp. 2076–2078, 1996.

[11]   A. Stesmans and V. Afanas’ev, “Electrical Activity of Interfacial Paramagnetic Defects in Thermal (100)Si∕SiO2  ,” Phys.Rev.B, vol. 57, no. 16, pp. 10030–10034, 1998.

[12]   K. L. Brower, “Passivation of Paramagnetic Si∕SiO2  Interface States with Molecular Hydrogen,” Appl.Phys.Lett., vol. 53, no. 6, pp. 508–510, 1988.

[13]   F. Z. J, C. Zhao, A. Chen, G. Groeseneken, and R. Degraeve, “Hole Traps in Silicon DioxidesPart I: Properties,” IEEE Trans.Elect.Dev., vol. 51, no. 8, pp. 1267–1273, 2004.

[14]   D. Fleetwood, ““Border Traps” in MOS Devices,” IEEE Trans.Nucl.Sci., vol. 39, no. 2, pp. 269–271, 1992.

[15]   A. Lelis, T. Oldham, H. Boesch, and F. McLean, “The Nature of the Trapped Hole Annealing Process,” IEEE Trans.Nucl.Sci., vol. 36, no. 6, pp. 1808–1815, 1989.

[16]   A. Lelis and T. Oldham, “Time Dependence of Switching Oxide Traps,” IEEE Trans.Nucl.Sci., vol. 41, no. 6, pp. 1835–1843, 1994.

[17]   P. Lenahan, “Deep Level Defects Involved in MOS Device Instabilities,” Microelectron.Reliab., vol. 47, pp. 890–898, 2007.

[18]   J. Campbell and P. Lenahan, “Location, Structure, and Density of States of NBTI-Induced Defects in Plasma Nitrides PMOSFET,” in Proc.IRPS, pp. 503–510, 2007.

[19]   M. Boero, A. Pasquarello, J. Sarnthein, and R. Car, “Structure and Hyperfine Parameters of E ′1  Centers in α  -Quartz and in Vitreous SiO2  ,” Phys.Rev.Lett., vol. 78, no. 5, pp. 887–890, 1997.

[20]   Z.-Y. Lu, C. Nicklaw, D. Fleetwood, R. Schrimpf, and S. Pantelides, “Structure, Properties, and Dynamics of Oxygen Vacancies in Amorphous SiO2  ,” Phys.Rev.Lett., vol. 89, no. 28, p. 285505, 2002.

[21]   V. Huard, M. Denais, and C. Parthasarathy, “NBTI Degradation: From Physical Mechanisms to Modeling,” Microelectron.Reliab., vol. 46, no. 1, pp. 1–23, 2006.

[22]   D. Ang, S. Wang, and C. Ling, “Evidence of Two Distinct Degradation Mechanisms from Temperature Dependence of Negative Bias Stressing of the Ultrathin Gate p-MOSFET,” IEEE Elect.Dev.Let., vol. 26, no. 12, pp. 906–908, 2005.

[23]   T. Tewksbury, Relaxation Effects in MOS Devices due to Tunnel Exchange with Near-Interface Oxide Traps. Ph.D. Thesis, MIT, 1992.

[24]   T. Grasser, B. Kaczer, T. Aichinger, W. Goes, and M. Nelhiebel, “Defect Creation Stimulated by Thermally Activated Hole Trapping as the Driving Force Behind Negative Bias Temperature Instability in SiO2  , SiON  , and High-k Gate Stacks,” in Proc.IIRW, pp. 91–95, 2008.

[25]   B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and its Experimental Verification,” in Proc.IRPS, pp. 381–387, 2005.

[26]   B. Kaczer, T. Grasser, P. Roussel, J. Martin-Martinez, R. O’Connor, B. O’Sullivan, and G. Groeseneken, “Ubiquitous Relaxation in BTI Stressing-New Evaluation and Insights,” in Proc.IRPS, pp. 20–27, 2008.

[27]   H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, and C. Schlünder, “Analysis of NBTI Degradation- and Recovery-Behavior Based on Ultra Fast Vth  -Measurements,” in Proc.IRPS, pp. 448–453, 2006.

[28]   C. Shen, M.-F. Li, X. Wang, Y.-C. Yeo, and D.-L. Kwong, “A fast Measurement Technique of MOSFET ID  VG  Characteristics,” IEEE Elect.Dev.Let., vol. 27, no. 1, pp. 55–57, 2006.

[29]   D. Heh, R. Choi, C. Young, B. Lee, and G. Bersuker, “A Novel Bias Temperature Instability Characterization Methodology for High-k  nMOSFETs,” IEEE Elect.Dev.Let., vol. 27, no. 10, pp. 849–851, 2006.

[30]   H. Reisinger, O. Blank, W. Heinrigs, W. Gustin, and C. Schlünder, “A Comparison of Very Fast to Very Slow Components in Degradation and Recovery Due to NBTI and Bulk Hole Trapping to Existing Physical Models,” IEEE Trans.Dev.Mater.Rel., vol. 7, no. 1, pp. 119–129, 2007.

[31]   T. Grasser, W. Goes, V. Sverdlov, and B. Kaczer, “The Universality of NBTI Relaxation and its Implications for Modeling and Characterization,” in Proc.IRPS, pp. 268–280, 2007.

[32]   A. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan, “NBTI Impact on Transistor and Circuit: Models, Mechanisms, and Scaling Effects,” in Proc.IEDM, pp. 1–4, 2003.

[33]   C. Schlünder, R.-P. Vollertsen, W. Gustin, and H. Reisinger, “A Reliable and Accurate Approach to Assess NBTI Behavior of State-Of-The-Art pMOSFETs With Fast-WLR,” in Proc.ESSDERC, pp. 131–134, 2007.

[34]    H. Reisinger, U. Brunner, W. Heinrigs, W. Gustin, and C. Schlünder, “A Comparison of Fast Methods for Measuring NBTI Degradation,” IEEE Trans.Dev.Mater.Rel., vol. 7, no. 4, pp. 531–539, 2007.

[35]   A. Islam, E. N. Kumar, H. Das, S. Purawat, V. Maheta, H. Aono, E. Murakami, S. Mahapatra, and M. Alam, “Theory and Practice of On-the-fly and Ultra-fast VT  Measurements for NBTI Degradation: Challenges and Opportunities,” in Proc.IEDM, pp. 1–4, 2007.

[36]   T. Grasser, P.-J. Wagner, P. Hehenberger, W. Goes, and B. Kaczer, “A Rigorous Study of Measurement Techniques for Negative Bias Temperature Instability,” in Proc.IIRW, pp. 6–11, 2007.

[37]   T. Grasser, W. Goes, and B. Kaczer, “Dispersive Transport and Negative Bias Temperature Instability: Boundary Conditions, Initial Conditions, and Transport Models,” IEEE Trans.Dev.Mater.Rel., vol. 8, no. 1, pp. 79–97, 2008.

[38]   A. Stesmans, “Dissociation Kinetics of Hydrogen-Passivated Pb  Defects at the (111)Si∕SiO2  Interface,” Phys.Rev.B, vol. 61, no. 12, pp. 8393–8403, 2000.

[39]   E. Poindexter and W. Warren, “Paramagnetic Point Defects in Amorphous Thin Films of SiO2  and Si3  N4  : Updates and Additions,” J.Electrochem.Soc., vol. 142, no. 7, pp. 2508–2516, 1995.

[40]   J. Conley and P. Lenahan, “Room Temperature Reactions Involving Silicon Dangling Bond Centers and Molecular Hydrogen in Amorphous SiO2  Thin Films on Silicon,” IEEE Trans.Nucl.Sci., vol. 39, no. 6, pp. 2186–2191, 1992.

[41]   J. Conley and P. Lenahan, “Room Temperature Reactions Involving Silicon Dangling Bond Centers and Molecular Hydrogen in Amorphous SiO2  Thin Films on Silicon,” Appl.Phys.Lett., vol. 62, no. 1, pp. 40–42, 1993.

[42]   J. Conley Jr., P. Lenahan, A. Lelis, and T. Oldham, “Electron Spin Resonance Evidence for the Structure of a Switching Oxide Trap: Long Term Structural Change at Silicon Dangling Bond Sites in SiO2  ,” Appl.Phys.Lett., vol. 67, no. 15, pp. 2179–2181, 1995.

[43]   P. Lenahan, “Atomic Scale Defects Involved in MOS Reliability Problems,” Microelectron.Eng., vol. 69, pp. 173–181, 2003.

[44]   P. Lenahan, “Dominating Defects in the MOS System: Pb  and E ′ Centers,” in Defects in Microelectronic Materials and Devices (D. Fleetwood, R. Schrimpf, and S. Pantelides, eds.), Taylor and Francis/CRC Press, 2008. (invited).

[45]   E. Poindexter, P. Caplan, B. Deal, and R. Razouk, “Interface States and Electron Spin Resonance Centers in Thermally Oxidized (111) and (100) Silicon Wafers,” J.Appl.Phys., vol. 52, no. 2, pp. 879–884, 1981.

[46]   J. Conley and P. Lenahan, “Molecular Hydrogen, E′ Center Hole Traps, and Radiation Induced Interface Traps in MOS Devices,” IEEE Trans.Nucl.Sci., vol. 40, no. 6, pp. 1335–1340, 1993.

[47]   J. Campbell and P. Lenahan, “NBTI: An Atomic-Scale Defect Persective,” in Proc.IRPS, pp. 442–447, 2006.

[48]   B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, P. Roussel, and G. Groeseneken, “NBTI from the Perspective of Defect States with Widely Distributed Time Scales,” in Proc.IRPS, pp. 55–60, 2009.

[49]   H. Reisinger, T. Grasser, and C. Schlünder, “A Study of NBTI by the Statistical Analysis of the Properties of Individual Defects in pMOSFETs,” in Proc.IIRW, pp. 30–35, 2009.

[50]   B. Kaczer, T. Grasser, P. Roussel, J. Franco, R. Degraeve, L. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger, “Origin of NBTI Variability in Deeply Scaled PFETs,” in Proc.IRPS, pp. 1095–1098, 2010.

[51]   T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, “The Time Dependent Defect Spectroscopy for the Characterization of Border Traps in Metal-Oxide-Semiconductor Transistors,” Phys.Rev.B, vol. 82, no. 24, p. 245318, 2010.

[52]   P.-J. Wagner, T. Grasser, H. Reisinger, and B. Kaczer, “Oxide Traps in MOS Transistors: Semi-Automatic Extraction of Trap Parameters from Time Dependent Defect Spectroscopy,” in Proc.IPFA, pp. 249–254, 2010.

[53]   T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability,” in Proc.IRPS, pp. 16 –25, 2010.

[54]   H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, “The Statistical Analysis of Individual Defects Constituting NBTI and its Implications for Modeling DC- and AC-Stress,” in Proc.IRPS, pp. 7–15, 2010.

[55]   N. Zanolla, D. Siprak, P. Baumgartner, E. Sangiorgi, and C. Fiegna, “Measurement and Simulation of Gate Voltage Dependence of RTS Emission and Capture Time Constants in MOSFETs,” in Ultimate Integration of Silicon, pp. 137–140, 2008.

[56]   M. Kirton and M. Uren, “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States, and Low-Frequency (1/f) Noise,” Adv.Phys., vol. 38, no. 4, pp. 367–486, 1989.

[57]   V. Huard, “Two Independent Components Modeling for Negative Bias Temperature Instability,” in Proc.IRPS, pp. 33 –42, 2-6 2010.

[58]   V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, and C. Ouvrard, “New Characterization and Modeling Approach for NBTI Degradation from Transistor to Product Level,” in Proc.IEDM, pp. 797–800, 2007.

[59]   T. Grasser and B. Kaczer, “Negative Bias Temperature Instability: Recoverable versus Permanent Degradation,” in Proc.ESSDERC, pp. 127–130, 2007.

[60]   T. Grasser, W. Goes, and B. Kaczer, “Towards Engineering Modeling of Negative Bias Temperature Instability,” in Defects in Microelectronic Materials and Devices (D. Fleetwood, R. Schrimpf, and S. Pantelides, eds.), pp. 1–30, Taylor and Francis/CRC Press, 2008.

[61]   T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, and M. Nelhiebel, “A Two-Stage Model for Negative Bias Temperature Instability,” in Proc.IRPS, pp. 33–44, 2009.

[62]   T. Grasser, B. Kaczer, P. Hehenberger, W. Goes, R. O’Connor, H. Reisinger, W. Gustin, and C. Schlünder, “Simultaneous Extraction of Recoverable and Permanent Components Contributing to Bias-Temperature Instability,” in Proc.IEDM, pp. 801–804, 2007.

[63]   T. Grasser, B. Kaczer, and W. Goes, “An Energy-Level Perspective of Bias Temperature Instability,” in Proc.IRPS, pp. 28–38, 2008.

[64]   L.-A. Ragnarsson and P. Lundgren, “Electrical Characterization of Pb  Centers in (100)Si∕SiO2  Structures: The Influence of Surface Potential on Passivation During Post Metallization Anneal,” Appl.Phys.Lett., vol. 88, no. 2, pp. 938–942, 2000.

[65]   E. Cartier and J. Stathis, “Hot-Electron Induced Passivation of Silicon Dangling Bonds at the Si(111)∕SiO2  Interface,” Appl.Phys.Lett., vol. 69, no. 1, pp. 103–105, 1996.

[66]   N. Johnson, D. Biegelsen, M. Moyer, S. Chang, E. Poindexter, and P. Caplan, “Characteristic electronic defects at the Si- SiO2  interface,” Appl.Phys.Lett., vol. 43, no. 6, pp. 563–565, 1983.

[67]   B. Henderson, M. Pepper, and R. Vranch, “Spin-Dependent and Localisation Effects at Si∕SiO2  Device Interface,” Semicond.Sci.Technol., vol. 4, pp. 1045–1060, 1989.

[68]   S. Zafar, “Statistical Mechanics Based Model for Negative Bias Temperature Instability Induced Degradation,” J.Appl.Phys., vol. 97, no. 10, pp. 1–9, 2005.

[69]   V. Huard, M. Denais, F. Perrier, N. Revil, C. Parthasarathy, A. Bravaix, and E. Vincent, “A Thorough Investigation of MOSFETs NBTI Degradation,” Microelectron.Reliab., vol. 45, no. 1, pp. 83–98, 2005.

[70]   T. Yang, C. Shen, M.-F. Li, C. Ang, C. Zhu, Y.-C. Yeo, G. Samudra, S. Rustagi, M. Yu, and D.-L. Kwong, “Fast DNBTI Components in p-MOSFET with SiON Dielectric,” IEEE Elect.Dev.Let., vol. 26, no. 11, pp. 826–828, 2005.

[71]   K. Jeppson and C. Svensson, “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices,” J.Appl.Phys., vol. 48, no. 5, pp. 2004–2014, 1977.

[72]   S. Ogawa and N. Shiono, “Generalized Diffusion-Reaction Model for the Low-Field Charge Build Up Instability at the Si  /SiO2  Interface,” Phys.Rev.B, vol. 51, no. 7, pp. 4218–4230, 1995.

[73]   M. Houssa, M. Aoulaiche, S. D. Gendt, G. Groeseneken, M. Heyns, and A. Stesmans, “Reaction-Dispersive Proton Transport Model for Negative Bias Temperature Instabilities,” Appl.Phys.Lett., vol. 86, no. 9, pp. 1–3, 2005.

[74]   M. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, “A Comprehensive Model for pMOS NBTI Degradation: Recent Progress,” Microelectron.Reliab., vol. 47, no. 6, pp. 853–862, 2007.

[75]   M. Alam and S. Mahapatra, “A Comprehensive Model of pMOS NBTI Degradation,” Microelectron.Reliab., vol. 45, no. 1, pp. 71–81, 2005.

[76]   S. Mahapatra, M. Alam, P. Kumar, T. Dalei, D. Varghese, and D. Saha, “Negative Bias Temperature Instability in CMOS Devices,” Microelectron.Eng., vol. 80, no. Suppl., pp. 114–121, 2005.

[77]    A. Krishnan, C. Chancellor, S. Chakravarthi, P. Nicollian, V. Reddy, A. Varghese, R. Khamankar, and S. Krishnan, “Material Dependence of Hydrogen Diffusion: Implications for NBTI Degradation,” in Proc.IEDM, pp. 688–691, 2005.

[78]   M. Alam and H. Kufluoglu, “On Quasi-Saturation of Negative Bias Temperature Degradation,” in ECS Trans., pp. 139–145, 2005.

[79]   S. Rangan, N. Mielke, and E. Yeh, “Universal Recovery Behavior of Negative Bias Temperature Instability,” in Proc.IEDM, pp. 341–344, 2003.

[80]    S. Pantelides, S. Rashkeev, R. Buczko, D. Fleetwood, and R. Schrimpf, “Ab Initio Calculations of H+  Energetics in SiO2  : Implications for Transport,” IEEE Trans.Nucl.Sci., vol. 47, no. 6, pp. 2262–2268, 2000.

[81]   S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, “Defect Generation by Hydrogen at the Si- SiO2  Interface,” Phys.Rev.Lett., vol. 87, no. 16, p. 165506, 2001.

[82]   S. Rashkeev, D. Fleetwood, R. Schrimpf, and S. Pantelides, “Proton-Induced Defect Generation at the Si- SiO2  Interface,” IEEE Trans.Nucl.Sci., vol. 48, no. 6, pp. 2086 –2092, 2001.

[83]   L. Tsetseris and S. Pantelides, “Migration, Incorporation, and Passivation Reactions of Molecular Hydrogen at the Si- SiO2  Interface,” Phys.Rev.B, vol. 70, no. 24, p. 245320, 2004.

[84]    S. Chakravarthi, A. Krishnan, V. Reddy, C. Machala, and S. Krishnan, “A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability,” in Proc.IRPS, pp. 273–282, 2004.

[85]   J. Noolandi, “Multiple-Trapping Model of Anomalous Transit-Time Dispersion in a  -Se,” Phys.Rev.B, vol. 16, no. 10, pp. 4466–4473, 1977.

[86]   J. Orenstein, M. Kastner, and V. Vaninov, “Transient Photoconductivity and Photo-Induced Optical Absorption in Amorphous Semiconductors.,” Philos.Mag.B, vol. 46, no. 1, pp. 23–62, 1982.

[87]   V. Arkhipov and A. Rudenko, “Drift and Diffusion in Materials with Traps,” Philos.Mag.B, vol. 45, no. 2, pp. 189–207, 1982.

[88]   B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Temperature Dependence of the Negative Bias Temperature Instability in the Framework of Dispersive Transport,” Appl.Phys.Lett., vol. 86, no. 5, pp. 1–3, 2005.

[89]   T. Grasser, W. Goes, and B. Kaczer, “Modeling of Dispersive Transport in the Context of Negative Bias Temperature Instability,” in Proc.IIRW, pp. 5–10, 2006.

[90]   A. Haggag, W. McMahon, K. Hess, K. Cheng, J. Lee, and J. Lyding, “High-Performance Chip Reliability from Short-Time-Tests,” in Proc.IRPS, pp. 271–279, 2001.

[91]   R. M. Martin, Electronic Structure — Basic Theory and Practical Methods. Cambridge University Press, 2004.

[92]   F. Jensen, Introduction to Computational Chemistry. John Wiley & Sons, 1999.

[93]   J. Kohanoff, Electronic Structure Calculations for Solids and Molecules. Cam, 2006.

[94]   T. Grasser, “Negative Bias Temperature Instability: Modeling Challenges and Perspectives,” in Proc.IRPS, 2008. (Tutorial).

[95]   T. Grasser, W. Goes, and B. Kaczer, “Modeling Bias Temperature Instability During Stress and Recovery,” in Proc.SISPAD, pp. 65–68, 2008.

[96]   P. Lenahan, P. Campbell, T. Krishnan, and S. Krishnan, “A Model for NBTI in Nitrided Oxide MOSFETs Which Does Not Involve Hydrogen or Diffusion,” IEEE Trans.Dev.Mater.Rel., vol. 99, p. 1, 2010.

[97]   S. Scharf, M. Schmidt, and D. Bränig, “Temperature-Dependent Positive Oxide Charge Annealing by Electron Tunneling,” Semicond.Sci.Technol., vol. 10, pp. 586–591, 1995.

[98]   A. Gnädinger and H. Talley, “Quantum Mechanical Calculation of the Carrier Distribution and the Thickness of the Inversion Layer of a MOS Field-Effect Transistor,” Sol.-St.Electr., vol. 13, no. 9, pp. 1301–1309, 1970.

[99]   K. H. Gundlach, “Zur Berechnung des Tunnelstroms durch eine trapezf örmige Potentialstufe,” Sol.-St.Electr., vol. 9, pp. 949–957, 1966.

[100]   A. Messiah, Quantenmechanik 1. DeGruyter, 1991.

[101]   S. Gasiorowicz, Quantum Physics. John Wiley & Sons, 1995.

[102]   W. Nolting, Grundkurs Theoretische Physik 5/2: Quantenmechanik - Methoden und Anwendungen. Springer-Verlag, 2006.

[103]   L. Freeman and W. Dahlke, “Theory of Tunneling into Interface States,” Sol.-St.Electr., vol. 13, no. 11, pp. 1483–1503, 1970.

[104]   I. Lundstrom and C. Svensson, “Tunneling to Traps in Insulators,” J.Appl.Phys., vol. 43, no. 12, pp. 5045–5047, 1972.

[105]   F. Heiman and G. Warfield, “The Effects of Oxide Traps on the MOS Capacitance,” IEEE Trans.Elect.Dev., vol. 12, no. 4, pp. 167–178, 1965.

[106]   S. Christensson, I. Lundström, and C. Svensson, “Low Frequency Noise in MOS Transistors — I Theory,” Sol.-St.Electr., vol. 11, pp. 797–812, 1968.

[107]   K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proceedings of the Royal Society of London. Series A, vol. 204, pp. 406–423, 1950.

[108]   M. Lax, “The Franck-Condon Principle and Its Application to Crystals,” Journ.Chem.Phys., vol. 20, no. 11, pp. 1752–1760, 1952.

[109]   T. Keil, “Shapes of Impurity Absorption Bands in Solids,” Phys.Rev., vol. 140, no. 2A, pp. A601–A617, 1965.

[110]   K. Mikkelsen and M. Ratner, “Electron Tunneling in Solid-State Electron-Transfer Reactions,” Chemical Reviews, vol. 87, no. 1, pp. 113–153, 1987.

[111]   M. Andersson, Z. Xiao, S. Norrman, and O. Engström, “Model based on Trap-Assisted Tunneling for Two-Level Current Fluctuations in Submicrometer Metal-Silicon-Dioxide Diodes,” Phys.Rev.B, vol. 41, no. 14, pp. 9836–9842, 1990.

[112]   P. Blöchl and J. Stathis, “Hydrogen Electrochemistry and Stress-Induced Leakage Current in Silica,” Phys.Rev.Lett., vol. 83, no. 2, pp. 372–375, 1999.

[113]   P. Blöchl and J. Stathis, “Aspects of Defects in Silica Related to Dielectric Breakdown of Gate Oxides in MOSFETs,” Phys.B, vol. 273-274, pp. 1022–1026, 1999.

[114]   W. Fowler, J. Rudra, M. Zvanut, and F. Feigl, “Hysteresis and Franck-Condon Relaxation in Insulator-Semiconductor Tunneling,” Phys.Rev.B, vol. 41, no. 12, pp. 8313–8317, 1990.

[115]   C. Henry and D. Lang, “Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP,” Phys.Rev.B, vol. 15, no. 2, pp. 989–1016, 1977.

[116]   S. Makram-Ebeid and M. Lannoo, “Quantum Model for Phonon-Assisted Tunnel Ionization of Deep Levels in a Semiconductor,” Phys.Rev.B, vol. 25, no. 10, pp. 6406–6424, 1982.

[117]   S. Ganichev, W. Prettl, and I. Yassievich, “Deep Impurity-Center Ionization by Far-Infrared Radiation,” Phys.Solid State, vol. 39, no. 1, pp. 1703–1726, 1997.

[118]   S. Ganichev, I. Yassievich, V. Perel, H. Ketterl, and W. Prettl, “Tunneling Ionization of Deep Centers in High-Frequency Electric Fields,” Phys.Rev.B, vol. 65, p. 085203, 2002.

[119]   A. Avellan, D. Schroeder, and W. Krautschneider, “Modeling Random Telegraph Signals in the Gate Current of Metal-Oxide-Semiconductor Field Effect Transistors after Oxide Breakdown,” J.Appl.Phys., vol. 94, no. 1, pp. 703–708, 2003.

[120]   M. Isler and D. Liebig, “Enhanced Multiphonon Capture of Hot Electrons by Deep Centers with Strong Lattice Coupling: A Monte Carlo Study of InP : Fe  ,” Phys.Rev.B, vol. 61, no. 11, pp. 7483–7488, 2000.

[121]   R. Siergiej, M. White, and N. Saks, “Theory and Measurement of Quantization Effects on Si- SiO2  Interface Trap Modeling,” Sol.-St.Electr., vol. 35, no. 6, pp. 843–854, 1992.

[122]   N. Lukyanchikova, M. Petrichuk, N. Garbar, E. Simoen, and C. Claeys, “Influence of the Substrate Voltage on the Random Telegraph Signal Parameters in Submicron n  -Channel Metal-Oxide-Semiconductor Field-Effect Transistors under a Constant Inversion Charge Density,” Appl.Phys.A, vol. 70, no. 3, pp. 345–353, 2000.

[123]   M. Schulz, “Coulomb Energy of Traps in Semiconductor Space-Charge Regions,” J.Appl.Phys., vol. 74, no. 4, pp. 2649–2657, 1993.

[124]   M. Lu and M. Chen, “Oxide-Trap-Enhanced Coulomb Energy in a Metal-Oxide-Semiconductor System,” Phys.Rev.B, vol. 72, no. 23, pp. 235417–1, 2005.

[125]   A. Palma, A. Godoy, J. A. Jimenez-Tejada, J. E. Carceller, and J. A. Lopez-Villanueva, “Quantum Two-Dimensional Calculation of Time Constants of Random Telegraph Signals in Metal-Oxide-Semiconductor Structures,” Phys.Rev.B, vol. 56, no. 15, pp. 9565–9574, 1997.

[126]   A. Gehring, Simulation of Tunneling in Semiconductor Devices. Ph.d. thesis, Vienna University of Technology, 2003.

[127]   W. Shockley and W. Read, “Statistics of the Recombinations of Holes and Electrons,” Phys.Rev., vol. 87, no. 5, pp. 835–842, 1952.

[128]   M. Masuduzzaman, A. Islam, and M. Alam, “Exploring the Capability of Multifrequency Charge Pumping in Resolving Location and Energy Levels of Traps Within Dielectric,” IEEE Elect.Dev.Let., vol. 55, no. 12, pp. 3421–3431, 2008.

[129]   S. Datta, Quantum Transport — Atom to Transistor. Cambridge University Press, 2005.

[130]   M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Goes, M. Vasicek, O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina, and S. Selberherr, “A Multi-Purpose Schrödinger-Poisson Solver for TCAD Applications,” Journ. of Computational Electronics, vol. 6, pp. 179–182, 2007.

[131]   O. Ibe, Markov Processes for Stochastic Modeling. Academic Press, 2009.

[132]    A. Asenov, “Random Dopant-Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 μm  MOSFET’s: A 3-D “Atomistic” Simulation Study,” IEEE Trans.Elect.Dev., vol. 45, no. 12, pp. 2505–2513, 1998.

[133]   N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “On Discrete Random Dopant Modeling in Drift-Diffusion Simulations: Physical Meaning of “Atomistic” Dopants,” Microelectron.Reliab., vol. 42, no. 2, pp. 189–199, 2002.

[134]   A. Asenov, G. Slavcheva, A. Brown, J. Davies, and S. Saini, “Increase in the Random Dopant-Induced Threshold Fluctuations and Lowering in Sub-100 nm  MOSFETs due to Quantum Effects: a 3-D Density-Gradient Simulation Study,” IEEE Trans.Elect.Dev., vol. 48, no. 4, pp. 722–729, 2001.

[135]   D. Gillespie, Markov Processes: An Introduction for Physical Scientists. Academic Press, 1992.

[136]   W. Kohn, “Nobel Lecture: Electronic Structure of Matter — Wave Functions and Density Functionals,” Rev.Mod.Phys., vol. 71, no. 5, pp. 1253–1266, 1999.

[137]   P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys.Rev., vol. 136, no. 3B, pp. B864–B871, 1964.

[138]   G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Phys.Rev.B, vol. 47, no. 1, pp. 558–561, 1993.

[139]   G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium,” Phys.Rev.B, vol. 49, no. 20, pp. 14251–14269, 1994.

[140]   G. Kresse and J. Furthmüller, “Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set,” Comput.Mat.Science, vol. 6, no. 1, pp. 15–50, 1996.

[141]   G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set,” Phys.Rev.B, vol. 54, no. 16, pp. 11169–11186, 1996.

[142]   A. Alkauskas, P. Broqvist, and A. Pasquarello, “Charge State of the O2  Molecule during Silicon Oxidation through Hybrid Functional Calculations,” Phys.Rev.B, vol. 78, no. 16, p. 161305, 2008.

[143]   P. Broqvist, A. Alkauskas, and A. Pasquarello, “Band Alignments and Defect Levels in Si- HfO2  Gate Stacks: Oxygen Vacancy and Fermi-Level Pinning,” Appl.Phys.Lett., vol. 92, no. 13, p. 132911, 2008.

[144]   J. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys.Rev.Lett., vol. 77, no. 18, pp. 3865–3868, 1996.

[145]   P. Blöchl, “Projector Augmented-Wave Method,” Phys.Rev.B, vol. 50, no. 24, pp. 17953–17979, 1994.

[146]   G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Phys.Rev.B, vol. 59, no. 3, pp. 1758–1775, 1999.

[147]   C. V. de Walle and J. Neugebauer, “First-Principles Calculations for Defects and Impurities: Applications to III-Nitrides,” J.Appl.Phys., vol. 95, no. 8, pp. 3851–3879, 2004.

[148]   G. Lopez and V. Fiorentini, “Structure, Energetics, and Extrinsic Levels of Small Self-Interstitial Clusters in Silicon,” Phys.Rev.B, vol. 69, no. 15, p. 155206, 2004.

[149]   P. Blöchl, “First-Principles Calculations of Defects in Oxygen-Deficient Silica Exposed to Hydrogen,” Phys.Rev.B, vol. 62, no. 10, pp. 6158–6179, 2000.

[150]   J. Janak, “Proof that ∂E ∕∂ni = εi  in Density-Functional Theory,” Phys.Rev.B, vol. 18, no. 12, pp. 7165–7168, 1978.

[151]   P. Vashishta, R. Kalia, J. Rino, and I. Ebbsjö, “Interaction Potential for SiO2  : A Molecular-Dynamics Study of Structural Correlations,” Phys.Rev.B, vol. 41, no. 17, pp. 12197–12209, 1990.

[152]   J. Rino, I. Ebbsjö, R. Kalia, A. Nakano, and P. Vashishta, “Structure of Rings in Vitreous SiO
   2  ,” Phys.Rev.B, vol. 47, no. 6, pp. 3053–3062, 1993.

[153]   J. Sarnthein, A. Pasquarello, and R. Car, “Model of Vitreous SiO
   2  Generated by an Ab Initio Molecular-Dynamics Quench from the Melt,” Phys.Rev.B, vol. 52, no. 17, pp. 12690–12695, 1995.

[154]   J. Sarnthein, A. Pasquarello, and R. Car, “Structural and Electronic Properties of Liquid and Amorphous SiO
   2  : An Ab Initio Molecular Dynamics Study,” Phys.Rev.Lett., vol. 74, no. 23, pp. 4682–4685, 1995.

[155]   R. Van Ginhoven, H. Jónsson, and L. Corrales, “Silica Glass Structure Generation for Ab Initio Calculations using Small Samples of Amorphous Silica,” Phys.Rev.B, vol. 71, no. 2, p. 024208, 2005.

[156]    L. Giacomazzi, P. Umari, and A.Pasquarello, “Medium-Range Structure of Vitreous SiO2  Obtained through First-Principles Investigation of Vibrational Spectra,” Phys.Rev.B, vol. 79, no. 6, p. 064202, 2009.

[157]   D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 1996.

[158]   B. van Beest, G. Kramer, and R. van Santen, “Force Fields for Silicas and Aluminophosphates Based on Ab Initio Calculations,” Phys.Rev.Lett., vol. 64, no. 16, pp. 1955–1958, 1990.

[159]   K. Vollmayr, W. Kob, and K. Binder, “Cooling-Rate Effects in Amorphous Silica: A Computer-Simulation Study,” Phys.Rev.B, vol. 54, no. 22, pp. 15808–15827, 1996.

[160]   V. Huard, C. Parthasarathy, C. Guerin, and M. Denais, “Physical Modeling of Negative Bias Temperature Instabilities for Predictive Extrapolation,” in Proc.IRPS, pp. 733–734, 2006.

[161]   D. Fleetwood, H. Xiong, Z.-Y. Lu, C. Nicklaw, J. Felix, R. Schrimpf, and S. Pantelides, “Unified Model of Hole Trapping, 1∕f  Noise, and Thermally Stimulated Current in MOS Devices,” IEEE Trans.Nucl.Sci., vol. 49, no. 6, pp. 2674–2683, 2002.

[162]   C. Nicklaw, D. Fleetwood, R. Schrimpf, and S. Pantelides, “The Structure, Properties, and Dynamics of Oxygen Vacancies in Amorphous SiO2  ,” IEEE Trans.Nucl.Sci., vol. 49, no. 6, pp. 2667–2673, 2002.

[163]   C. Nicklaw, Multi-Level Modeling of Total Ionizing Dose in a - SiO2   : First-Principles to Circuits. PhD thesis, Vanderbilt University, 2003.

[164]   J. Godet and A. Pasquarello, “Ab Initio Study of Charged States of H  in Amorphous SiO2  ,” Microelectron.Eng., vol. 80, pp. 288–291, 2005.

[165]   A. Alkauskas and A. Pasquarello, “Alignment of Hydrogen-Related Defect Levels at the Si- SiO2  Interface,” Phys.B Condens.Matter, vol. 401402, p. 546549, 2007.

[166]   H. Baik, M.K., G.-S. Park, S. Song, M.Varela, A. Franceschetti, S. Pantelides, and S. Pennycook, “Interface Structure and Non-Stoichiometry in HfO2  Dielectrics,” Appl.Phys.Lett., vol. 85, no. 4, pp. 672–674, 2004.

[167]   A. Bongiorno and A. Pasquarello, “Oxygen Diffusion through the Disordered Oxide Network during Silicon Oxidation,” Phys.Rev.Lett., vol. 88, no. 12, p. 125901, 2002.

[168]   A. Bongiorno and A. Pasquarello, “Multiscale Modeling of Oxygen Diffusion through the Oxide during Silicon Oxidation,” Phys.Rev.B, vol. 70, no. 19, p. 195312, 2004.

[169]   T. Yamasaki, C. Kaneta, T. Uchiyama, T. Uda, and K. Terakura, “Geometric and Electronic Structures of SiO2∕Si(001)  Interfaces,” Phys.Rev.B, vol. 63, no. 11, p. 115314, 2001.

[170]   F. Giustino, A. Bongiorno, and A. Pasquarello, “Atomistic Models of the Si(100) - SiO2  Interface: Structural, Electronic and Dielectric Properties,” J.Phys.-Condens.Matter, vol. 17, pp. S2065–S2074, 2005.

[171]   P. Denteneer, C. V. de Walle, and S. Pandelides, “Microscopic Structure of the Hydrogen-Boron Complex in Crystalline Silicon,” Phys.Rev.B, vol. 39, no. 1, pp. 10809–10825, 1989.

[172]   S. Mukhopadhyay, P. Sushko, A. Stoneham, and A. Shluger, “Modeling of the Structure and Properties of Oxygen Vacancies in Amorphous Silica,” Phys.Rev.B, vol. 70, no. 19, p. 195203, 2004.

[173]   L. Martin-Samos, Y. Limoge, J.-P. Crocombette, and G. Roma, “Neutral Self-Defects in a Silica Model: A First-Principles Study,” Phys.Rev.B, vol. 71, no. 1, p. 014116, 2005.

[174]   T. Demuth, Y. Jeanvoine, J. Hafner, and J. ´A  ngy´a  n, “Polymorphism in Silica Studied in the Local Density and Generalized-Gradient Approximations,” J.Phys.-Condens.Matter, vol. 11, p. 38333874, 1999.

[175]   A. Yokozawa and Y. Miyamoto, “First-Principles Calculations for Charged States of Hydrogen Atoms in SiO2  ,” Phys.Rev.B, vol. 55, no. 20, pp. 13783–13788, 1997.

[176]   P. Bunson, M. D. Ventra, S. Pantelides, R. Schrimpf, and K. Galloway, “Ab Initio Calculations of H+  Energetics in SiO2  : Implications for Transport,” IEEE Trans.Nucl.Sci., vol. 46, no. 6, pp. 1568–1573, 1999.

[177]   V. Afanas’ev, J. de Nijs, P. Balk, and A. Stesmans, “Degradation of the Thermal Oxide of the Si∕SiO2∕Al  System due to Vacuum Ultraviolet Irradiation,” J.Appl.Phys., vol. 78, no. 11, pp. 6481–6490, 1995.

[178]   R. Van Ginhoven, H. Hjalmarson, A. Edwards, and B. Tuttle, “Hydrogen Release in Si∕SiO2  : Source Sites and Release Mechanisms,” Nucl.Instr.&Meth.Phys.Res.Sect.B, vol. 250, no. 1-2, pp. 274–278, 2006.

[179]   P. Bunson, M. D. Ventra, S. Pantelides, D. Fleetwood, and R. Schrimpf, “Hydrogen-Related Defects in Irradiated SiO2  ,” IEEE Trans.Nucl.Sci., vol. 47, no. 6, pp. 2289–2296, 2000.

[180]   C. V. de Walle, P. Denteneer, Y. Bar-Yam, and S. Pandelides, “Theory of Hydrogen Diffusion and Reactions in Crystalline Silicon,” Phys.Rev.B, vol. 39, no. 15, pp. 10791–10808, 1989.

[181]   C. V. de Walle and R. Street, “Structure, Energetics, and Dissociation of Si  -H  Bonds at Dangling Bonds in Silicon,” Phys.Rev.B, vol. 49, no. 20, pp. 14766–14769, 1994.

[182]   A. McWhorter, “1/f Noise and Germanium Surface Properties,” in Sem.Surf.Phys, RH Kingston (Univ Penn Press), 1957.

[183]   MiniMOS -NT Device and Circuit Simulator  , Institute for Microelectronic, TU Wien.

[184]   T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, “Switching Oxide Traps as the Missing Link between Negative Bias Temperature Instability and Random Telegraph Noise,” in Proc.IEDM, 2009.

[185]   Conley and Lenahan, “Electron Spin Resonance Evidence that   ′
E γ  Centers Can Behave as Switching Traps,” IEEE Trans.Nucl.Sci., vol. 42, no. 6, pp. 1744–1749, 1995.

[186]   R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” in Proc. R. Soc. Lond. A, vol. 119, pp. 173–181, 1928.