next up previous contents
Next: 3.1.3 The Hydrodynamic Transport Up: 3.1 Sets of Partial Previous: 3.1.1 The Basic Semiconductor

3.1.2 The Drift-Diffusion Transport Model

The drift-diffusion current relations can, amongst others, be derived from the Boltzmann transport equation by the method of moments or from basic principles of irreversible thermodynamics under the assumption T$\scriptstyle \nu$ = TL. The electron and hole current densities are given by

Jn = q . $ \mu_{n}^{}$ . n . $ \left(\vphantom{\mathrm{grad}\left(\frac{E_{C}}{\mathrm{q}}-\psi\right) + \fra...
...N_{C,0}}{n}\cdot\mathrm{grad}\left(\frac{n\cdot T_{L}}{N_{C,0}}\right) }\right.$grad$ \left(\vphantom{\frac{E_{C}}{\mathrm{q}}-\psi}\right.$$ {\frac{E_{C}}{\mathrm{q}}}$ - $ \psi$ $ \left.\vphantom{\frac{E_{C}}{\mathrm{q}}-\psi}\right)$ + $ {\frac{\mathrm{k_{B}}}{\mathrm{q}}}$ . $ {\frac{N_{C,0}}{n}}$ . grad$ \left(\vphantom{\frac{n\cdot T_{L}}{N_{C,0}}}\right.$$ {\frac{n\cdot T_{L}}{N_{C,0}}}$ $ \left.\vphantom{\frac{n\cdot T_{L}}{N_{C,0}}}\right)$ $ \left.\vphantom{\mathrm{grad}\left(\frac{E_{C}}{\mathrm{q}}-\psi\right) + \fra...
...N_{C,0}}{n}\cdot\mathrm{grad}\left(\frac{n\cdot T_{L}}{N_{C,0}}\right) }\right)$, (3.5)

Jp = q . $ \mu_{p}^{}$ . p . $ \left(\vphantom{\mathrm{grad}\left(\frac{E_{V}}{\mathrm{q}}-\psi\right) - \fra...
...N_{V,0}}{p}\cdot\mathrm{grad}\left(\frac{p\cdot T_{L}}{N_{V,0}}\right) }\right.$grad$ \left(\vphantom{\frac{E_{V}}{\mathrm{q}}-\psi}\right.$$ {\frac{E_{V}}{\mathrm{q}}}$ - $ \psi$ $ \left.\vphantom{\frac{E_{V}}{\mathrm{q}}-\psi}\right)$ - $ {\frac{\mathrm{k_{B}}}{\mathrm{q}}}$ . $ {\frac{N_{V,0}}{p}}$ . grad$ \left(\vphantom{\frac{p\cdot T_{L}}{N_{V,0}}}\right.$$ {\frac{p\cdot T_{L}}{N_{V,0}}}$ $ \left.\vphantom{\frac{p\cdot T_{L}}{N_{V,0}}}\right)$ $ \left.\vphantom{\mathrm{grad}\left(\frac{E_{V}}{\mathrm{q}}-\psi\right) - \fra...
...N_{V,0}}{p}\cdot\mathrm{grad}\left(\frac{p\cdot T_{L}}{N_{V,0}}\right) }\right)$. (3.6)

Here, $ \mu_{n}^{}$ and $ \mu_{p}^{}$ denote the carrier mobilities, and TL is the lattice temperature. These current relations account for position-dependent band edge energies, EC and EV, and position-dependent effective masses, which are included in the effective density of states, NC, 0 and NV, 0. The index 0 indicates that NC, 0 and NV, 0 are evaluated at some (arbitrary) reference temperature, T0, which is constant in real space regardless of what the local values of the lattice and carrier temperatures are.


next up previous contents
Next: 3.1.3 The Hydrodynamic Transport Up: 3.1 Sets of Partial Previous: 3.1.1 The Basic Semiconductor
Tibor Grasser
1999-05-31