next up previous contents
Next: 3.1.4 The Lattice Heat Up: 3.1 Sets of Partial Previous: 3.1.2 The Drift-Diffusion Transport

3.1.3 The Hydrodynamic Transport Model

In the hydrodynamic transport model, carrier temperatures are assumed to be different from the lattice temperature. The basic equations (3.2) through (3.4) are augmented by energy balance equations which determine the carrier temperatures. The current relations take the form

Jn = q . $ \mu_{n}^{}$ . n . $ \left(\vphantom{\mathrm{grad}\left(\frac{E_{C}}{\mathrm{q}}-\psi\right) + \fra...
...N_{C,0}}{n}\cdot\mathrm{grad}\left(\frac{n\cdot T_{n}}{N_{C,0}}\right) }\right.$grad$ \left(\vphantom{\frac{E_{C}}{\mathrm{q}}-\psi}\right.$$ {\frac{E_{C}}{\mathrm{q}}}$ - $ \psi$ $ \left.\vphantom{\frac{E_{C}}{\mathrm{q}}-\psi}\right)$ + $ {\frac{\mathrm{k_{B}}}{\mathrm{q}}}$ . $ {\frac{N_{C,0}}{n}}$ . grad$ \left(\vphantom{\frac{n\cdot T_{n}}{N_{C,0}}}\right.$$ {\frac{n\cdot T_{n}}{N_{C,0}}}$ $ \left.\vphantom{\frac{n\cdot T_{n}}{N_{C,0}}}\right)$ $ \left.\vphantom{\mathrm{grad}\left(\frac{E_{C}}{\mathrm{q}}-\psi\right) + \fra...
...N_{C,0}}{n}\cdot\mathrm{grad}\left(\frac{n\cdot T_{n}}{N_{C,0}}\right) }\right)$, (3.7)

Jp = q . $ \mu_{p}^{}$ . p . $ \left(\vphantom{\mathrm{grad}\left(\frac{E_{V}}{\mathrm{q}}-\psi\right) - \fra...
...N_{V,0}}{p}\cdot\mathrm{grad}\left(\frac{p\cdot T_{p}}{N_{V,0}}\right) }\right.$grad$ \left(\vphantom{\frac{E_{V}}{\mathrm{q}}-\psi}\right.$$ {\frac{E_{V}}{\mathrm{q}}}$ - $ \psi$ $ \left.\vphantom{\frac{E_{V}}{\mathrm{q}}-\psi}\right)$ - $ {\frac{\mathrm{k_{B}}}{\mathrm{q}}}$ . $ {\frac{N_{V,0}}{p}}$ . grad$ \left(\vphantom{\frac{p\cdot T_{p}}{N_{V,0}}}\right.$$ {\frac{p\cdot T_{p}}{N_{V,0}}}$ $ \left.\vphantom{\frac{p\cdot T_{p}}{N_{V,0}}}\right)$ $ \left.\vphantom{\mathrm{grad}\left(\frac{E_{V}}{\mathrm{q}}-\psi\right) - \fra...
...N_{V,0}}{p}\cdot\mathrm{grad}\left(\frac{p\cdot T_{p}}{N_{V,0}}\right) }\right)$. (3.8)

The energy balance equations state conservation of the average carrier energies. In terms of the carrier temperatures, Tn and Tp, they can be written as
div Sn = grad$\displaystyle \left(\vphantom{\frac{E_{C}}{\mathrm{q}} -\psi}\right.$$\displaystyle {\frac{E_{C}}{\mathrm{q}}}$ - $\displaystyle \psi$ $\displaystyle \left.\vphantom{\frac{E_{C}}{\mathrm{q}} -\psi}\right)$ . Jn - $\displaystyle {\frac{3\cdot \mathrm{k_{B}}}{2}}$ . $\displaystyle \left(\vphantom{\frac{\partial \,(n\cdot T_{n})}{\partial t}
+ R\cdot T_{n} + n\cdot\frac{T_{n} -T_{L}}{\tau_{\epsilon,n}}}\right.$$\displaystyle {\frac{\partial \,(n\cdot T_{n})}{\partial t}}$ + R . Tn + n . $\displaystyle {\frac{T_{n} -T_{L}}{\tau_{\epsilon,n}}}$ $\displaystyle \left.\vphantom{\frac{\partial \,(n\cdot T_{n})}{\partial t}
+ R\cdot T_{n} + n\cdot\frac{T_{n} -T_{L}}{\tau_{\epsilon,n}}}\right)$ (3.9)
div Sp = grad$\displaystyle \left(\vphantom{\frac{E_{V}}{\mathrm{q}} -\psi}\right.$$\displaystyle {\frac{E_{V}}{\mathrm{q}}}$ - $\displaystyle \psi$ $\displaystyle \left.\vphantom{\frac{E_{V}}{\mathrm{q}} -\psi}\right)$ . Jp - $\displaystyle {\frac{3\cdot \mathrm{k_{B}}}{2}}$ . $\displaystyle \left(\vphantom{\frac{\partial \,(p\cdot T_{p})}{\partial t}
+ R\cdot T_{p} +p\cdot\frac{T_{p} -T_{L}}{\tau_{\epsilon,p}}}\right.$$\displaystyle {\frac{\partial \,(p\cdot T_{p})}{\partial t}}$ + R . Tp + p . $\displaystyle {\frac{T_{p} -T_{L}}{\tau_{\epsilon,p}}}$ $\displaystyle \left.\vphantom{\frac{\partial \,(p\cdot T_{p})}{\partial t}
+ R\cdot T_{p} +p\cdot\frac{T_{p} -T_{L}}{\tau_{\epsilon,p}}}\right)$. (3.10)

Here, $ \tau_{\epsilon,n}^{}$ and $ \tau_{\epsilon,p}^{}$ denote the energy relaxation times, while Sn and Sp are the energy fluxes.
Sn = - $\displaystyle \kappa_{n}^{}$ . grad Tn - $\displaystyle {\textstyle\frac{5}{2}}$ . $\displaystyle {\frac{\mathrm{k_{B}}\cdot T_{n}}{\mathrm{q}}}$ . Jn (3.11)
Sp = - $\displaystyle \kappa_{p}^{}$ . grad Tp + $\displaystyle {\textstyle\frac{5}{2}}$ . $\displaystyle {\frac{\mathrm{k_{B}}\cdot T_{p}}{\mathrm{q}}}$ . Jp (3.12)

The thermal conductivities, $ \kappa_{n}^{}$ and $ \kappa_{p}^{}$, are assumed to obey a generalized Wiedemann-Franz law [54].
$\displaystyle \kappa_{n}^{}$ = $\displaystyle \left(\vphantom{\frac{5}{2} + c_{n}}\right.$$\displaystyle {\textstyle\frac{5}{2}}$ + cn$\displaystyle \left.\vphantom{\frac{5}{2} + c_{n}}\right)$ . $\displaystyle {\frac{\mathrm{k_{B}}^{2}}{\mathrm{q}}}$ . Tn . $\displaystyle \mu_{n}^{}$ . n (3.13)
$\displaystyle \kappa_{p}^{}$ = $\displaystyle \left(\vphantom{\frac{5}{2} + c_{p}}\right.$$\displaystyle {\textstyle\frac{5}{2}}$ + cp$\displaystyle \left.\vphantom{\frac{5}{2} + c_{p}}\right)$ . $\displaystyle {\frac{\mathrm{k_{B}}^{2}}{\mathrm{q}}}$ . Tp . $\displaystyle \mu_{p}^{}$ . p (3.14)


next up previous contents
Next: 3.1.4 The Lattice Heat Up: 3.1 Sets of Partial Previous: 3.1.2 The Drift-Diffusion Transport
Tibor Grasser
1999-05-31