A.2 OTF2

Starting again with (A.1), but this time without simplifications, the total differential delivers

g  =  ∂ID,lin-= − ∂ID,lin = − ---------−-βVD----------.
 m     ∂VG        ∂Vθ      (1+ θ(VG − Vθ − 1∕2VD ))2
(A.5)

Linking (A.1) and (A.5) results in

ID,lin
 gm   = (1+ θ(VG − Vθ − 1∕2VD))(VG − Vθ − 1∕2VD)
(A.6)

which is needed for the mobility variation. Differentiating this expression with respect to Vθ  describes ΔV θ  as a function of the measured change in ID,lin∕gm   not depending on β  [6].

∂(ID,lin)
---gm---= − 1− 2θ(VG − V θ − 1∕2VD )
  ∂Vθ
(A.7)

   OTF,2          − Δ(IDg,lin)
ΔV θ     ≈ -------------m---------
           1 + 2θ(VG − Vθ − 1∕2VD)
(A.8)

In contrast to OTF1, OTF2 requires a complete ID(VG)  -characteristics for the extraction of θ  .