13.5.1 First Order Space Convex

The following discretization is a first order finite difference scheme for convex speed functions [87]. This and the scheme in Section 13.5.2 converge to the correct viscosity solution [26,88]. $ \phi_{ijk}^n$ are the grid values of the level set function $ u$ at time step $ n$ and $ F_{ijk}$ are the values of the speed function. Here $ D_{ijk}^{+x}$ is written shortly for $ D^{+x} \phi_{ijk}^n$, which is the forward difference in $ x$ direction. The explicit values for the next time step are

$\displaystyle \phi_{ijk}^{n+1} = \phi_{ijk}^n - \Delta t
\bigl( \max(F_{ijk},0) \nabla^+ + \min(F_{ijk},0) \nabla^- \bigr),
$

where

and

Clemens Heitzinger 2003-05-08