14.2 Modeling Silicon Self-Interstitial Cluster Formation and Dissolution

In [99] the following equation describing interstitial cluster kinetics is given:

$\displaystyle {\partial C\over\partial t} = 4\pi\alpha a D_I I C - {C D_I\over a^2} {\mathrm{e}}^{-E_b/kT},$ (14.1)

where $ D_I=D_0 {\mathrm{e}}^{-E_m/kT}$ is the interstitial diffusivity, $ a$ is the average interatomic spacing, $ \alpha$ is the capture radius expressed in units of $ a$, $ C(t,x)$ is the concentration of interstitials trapped in clusters, $ I(t,x)$ is the concentration of free interstitials and $ T$ is the annealing temperature.

Here the main formula of the model for the change of the concentration of clustered interstitials is

$\displaystyle {\partial C\over \partial t} = K_{\mathrm{fi}} {I^{\mathrm{ifi}} ...
...}} \over I_*^{\mathrm{isfc}}} (C+\alpha I)^{\mathrm{cf}} - K_r C^{\mathrm{cr}},$ (14.2)

where $ C(t,x)$ denotes the concentration of clustered interstitials, $ t$ time, $ I(t,x)$ the concentration of unclustered interstitials, and $ I_*(t,x)$ the equilibrium concentration of interstitials (which can be found by solving $ \partial C(t,x) / \partial t=0$). There is a number of parameters to be adjusted: $ K_{\mathrm{fi}}$, $ K_{\mathrm{fc}}$, $ K_{\mathrm{r}}$ (the reaction constants); the exponents $ I^{\mathrm{ifi}}$, $ I^{\mathrm{isfi}}$, $ I^{\mathrm{ifc}}$, and $ I^{\mathrm{isfc}}$, $ {\mathrm{cf}}$, and $ {\mathrm{cr}}$; and finally $ \alpha$.

The reaction constants have the form

$\displaystyle K_{\mathrm{fi}}$ $\displaystyle =$ $\displaystyle {\mathrm{kfi0}} \cdot {\mathrm{e}}^{-{\mathrm{kfiE}}/kT},$  
$\displaystyle K_{\mathrm{fc}}$ $\displaystyle =$ $\displaystyle {\mathrm{kfc0}} \cdot {\mathrm{e}}^{-{\mathrm{kfcE}}/kT},$  
$\displaystyle K_{\mathrm{r}}$ $\displaystyle =$ $\displaystyle {\mathrm{kr0}} \cdot {\mathrm{e}}^{-{\mathrm{krE}}/kT},$  

with $ {\mathrm{kfi0}}>0$, $ {\mathrm{kfc0}}>0$, and $ {\mathrm{kr0}}>0$. Here $ T$ is the temperature (in Kelvin) and $ k=8.617\cdot10^{-5}\,\mathrm{eV}\cdot\mathrm{K}^{-1}$ the Boltzmann constant. Since the coefficients $ {\mathrm{kfi0}}$, $ {\mathrm{kfc0}}$, and $ {\mathrm{kr0}}$ are positive, the first two terms in (14.2) are responsible for the formation of clusters and the last term for the dissolution. The sum of interstitials counted in $ C$ and $ I$ remains constant and the initial value of $ C$ is $ 10^9\,\mathrm{cm}^{-3}$.

The ratio $ I/I_*$ of the concentration of the unclustered interstitials and its equilibrium concentration is often called the interstitial supersaturation. Here additional exponents modify the interstitial supersaturation which appears in the form $ I^{\mathrm{ifi}} / I_*^{\mathrm{isfi}}$ and $ I^{\mathrm{ifc}} /
I_*^{\mathrm{isfc}}$.

Figure 14.2: Result for the high parameter set corresponding to parameter values shown in Table 14.3. The logarithm (base $ 10$) of the simulated and measured concentration $ [\mathrm{cm}^{-3}]$ of interstitial clusters is shown depending on time $ [\mathrm{s}]$.
\includegraphics[width=\linewidth]{figures/best-e42-run34-coloured}

Figure 14.3: Result for the low parameter set corresponding to parameter values shown in Table 14.3. The logarithm (base $ 10$) of the simulated and measured concentration $ [\mathrm{cm}^{-3}]$ of interstitial clusters is shown depending on time $ [\mathrm{s}]$.
\includegraphics[width=\linewidth]{figures/best-e42-run33-coloured}

The first term $ K_{\mathrm{fi}} (I^{\mathrm{ifi}} /
I_*^{\mathrm{isfi}})$ describes the joining of two clusters and thus the expected values for the exponents are $ {\mathrm{ifi}} = 2 =
{\mathrm{isfi}}$. The second growth term $ K_{\mathrm{fc}}
(I^{\mathrm{ifc}} / I_*^{\mathrm{isfc}}) (C+\alpha I)^{\mathrm{cf}}$ governs the case when an unclustered interstitials joins an interstitial cluster. Here we can expect the exponents to be unity. The second factor is a linear combination of $ C$ and $ I$ with an exponent.

Comparing (14.1) and (14.2), the growth term of (14.1), basically being a reaction constant times $ IC$, is split into two parts providing greater flexibility: one depending on a modified interstitial supersaturation term and one depending on a modified interstitial supersaturation term times $ (C+\alpha
I)^{\mathrm{cf}}$. In the dissolution term an exponent which was later found to be $ 1$ is added.

Clemens Heitzinger 2003-05-08