15.1 Introduction and Measurements

The inverse modeling problem is to find the parameter values of the diffusion model of arsenic in silicon, where a large number of 19 measurements ought to be matched. Table 15.1 shows the process conditions of the experiments for which measurements were obtained. In the table the temperature of the wafer surface, the time period where the wafer was exposed to arsenic, and the arsenic concentration at the wafer surface are given. The last column indicates if the measurement refers to the electrically active or total concentration.


Table 15.1: The 19 process conditions for which measurements of the arsenic profile were performed.
Measurement Temperature Time As surface Active/total
Number     concentration concentration
  $[\text{\textcelsius}]$ $ [\mathrm{s}]$ $ [1/\mathrm{cm}^3]$  

1
850 12575 $ 3 \cdot 10^{20}$ total
2 900 2020 $ 3 \cdot 10^{20}$ total
3 950 425 $ 4 \cdot 10^{20}$ total
4 950 1680 $ 1 \cdot 10^{21}$ total
6 1000 100 $ 4 \cdot 10^{20}$ total
7 1000 505 $ 1 \cdot 10^{21}$ total
8 1050 20 $ 6 \cdot 10^{20}$ total
10 1050 60 $ 9.45\cdot 10^{20}$ total
11 1050 1140 $ 1 \cdot 10^{21}$ total
12 1100 350 $ 2 \cdot 10^{21}$ total
13 1108 120 $ 3 \cdot 10^{19}$ total
14 1108 200 $ 5 \cdot 10^{18}$ total
15 1150 100 $ 2 \cdot 10^{21}$ total
16 1200 60 $ 4 \cdot 10^{18}$ total
1a 850 12575 $ 3 \cdot 10^{20}$ active
2a 900 2020 $ 3 \cdot 10^{20}$ active
3a 950 425 $ 4 \cdot 10^{20}$ active
6a 1000 100 $ 4 \cdot 10^{20}$ active
8a 1050 20 $ 6 \cdot 10^{20}$ active



Table 15.2: Variable of the model to be determined, their intervals, and their units.
Variable Interval Unit

$ \mathrm{f}$
$ [0,1]$ $ 1$
$ \mathrm{dx0}$ $ [1,10^{10}]$ $ \mathrm{cm}^2/\mathrm{s}$
$ \mathrm{dxE}$ $ [3.43,3.6]$ $ \mathrm{eV}$
$ \mathrm{dm0}$ $ [10^9,10^{12}]$ $ \mathrm{cm}^2/\mathrm{s}$
$ \mathrm{dmE}$ $ [4.05,4.6]$ $ \mathrm{eV}$
$ \mathrm{ctn0}$ $ [10^{-20},10^{-12}]$ $ \mathrm{cm}^{-3/(\mathrm{ctnF}-1)}$
$ \mathrm{ctnE}$ $ [-0.9,-0.39]$ $ \mathrm{eV}$
$ \mathrm{ctnF}$ $ [3.7,4.4]$ or constant $ =4$ $ 1$



Table 15.3: Result using optimizer DONOPT (cf. Section 9.3.5) with the above free variables yielding the respective values. The value of the objective function at this point is $ 0.0265418$.
Variable Best point found

$ \mathrm{f}$
$ 0.2$
$ \mathrm{dx0}$ $ 8.5\cdot 10^8$
$ \mathrm{dxE}$ $ 3.44$
$ \mathrm{dm0}$ $ 2.7\cdot 10^{11}$
$ \mathrm{dmE}$ $ 4.11028$
$ \mathrm{ctn0}$ $ 4.7\cdot 10^{-18}$
$ \mathrm{ctnE}$ $ -0.47$


Figure 15.1: Measurement and resulting simulation corresponding to parameter values shown in Table 15.3. The measurements used are numbered 1, 2, 3, 6, 7, and 8 in Table 15.1.
\includegraphics[width=0.9\textheight angle=90]{figures/best-e50-run10}


Table 15.4: Result using optimizer DONOPT (cf. Section 9.3.5) with the above free variables yielding the respective values. The value of the objective function at this point is $ 0.0219828$.
Variable Best point found

$ \mathrm{f}$
$ 0.200121$
$ \mathrm{dx0}$ $ 7.92893\cdot 10^8$
$ \mathrm{dxE}$ $ 3.44045$
$ \mathrm{dm0}$ $ 2.52394\cdot 10^{11}$
$ \mathrm{dmE}$ $ 4.12253$
$ \mathrm{ctn0}$ $ 5.66261\cdot 10^{-18}$
$ \mathrm{ctnE}$ $ -0.483025$
$ \mathrm{ctnF}$ $ 4.00856$


Figure 15.2: Measurement and resulting simulation corresponding to parameter values shown in Table 15.4. All 19 measurements from Table 15.1 were used.
\includegraphics[width=0.9\textheight angle=90]{figures/best-e52-run1}

The simulations were performed using TSUPREM-4 [8]. The model of diffusion of arsenic and of point defects, i.e., interstitials and vacancies, in silicon depends on several variables. The variables of the model to be determined are shown in Table 15.2. Their meaning is as follows. $ \mathrm{f}$ is a factor used in the pre-exponential constants of the diffusivities. The diffusivity of arsenic with neutral interstitials $ D_{i,0}$ is given by

$\displaystyle D_{i,0} = \mathrm{f}\cdot\mathrm{dx0} \cdot \mathrm{e}^{\mathrm{dxE} /kT},
$

where $ \mathrm{f}\cdot\mathrm{dx0}$ is the pre-exponential constant and $ \mathrm{dxE}$ the activation energy. The diffusivity of arsenic with neutral vacancies $ D_{v,0}$ is given by

$\displaystyle D_{v,0} = (1-\mathrm{f})\cdot\mathrm{dx0} \cdot \mathrm{e}^{\mathrm{dxE} /kT}.
$

The diffusivity of arsenic with singly-negative interstitials $ D_{i,-1}$ is given by

$\displaystyle D_{i,-1} = \mathrm{f}\cdot\mathrm{dm0} \cdot \mathrm{e}^{\mathrm{dmE} /kT},
$

and the diffusivity of arsenic with singly-negative vacancies $ D_{v,-1}$ is given by

$\displaystyle D_{v,-1} = (1-\mathrm{f})\cdot\mathrm{dm0} \cdot \mathrm{e}^{\mathrm{dmE} /kT}.
$

Thus the pre-exponential constants of the interstitials and the vacancies add to unity in the two cases of neutral and charged particles.

Finally $ \mathrm{ctn0}$ is the pre-exponential constant for the clustering of arsenic, $ \mathrm{ctnE}$ its activation energy, and $ \mathrm{ctnF}$ its exponent of concentration.

Clemens Heitzinger 2003-05-08