Next: Own Publications
Up: Dissertation Christian Hollauer
Previous: 10. Summary and Conclusions
-
- 1
-
A. Hössinger, Simulation of Ion Implantation for ULSI Technology.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 2000.
http://www.iue.tuwien.ac.at/phd/hoessinger/.
- 2
-
M. Radi, Three-Dimensional Simulation of Thermal Oxidation.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 1998.
http://www.iue.tuwien.ac.at/phd/radi/.
- 3
-
Stanford University, SUPREM-IV.
http://www-tcad.stanford.edu/tcad/programs/suprem45.html.
- 4
-
Stanford University, TCAD.
http://www-tcad.stanford.edu/index.html.
- 5
-
Integrated Circuits Laboratory, Standford University, SUPREM-IV.GS,
Two-Dimensional Process Simulation for Silicon and Gallium Arsenide, 1993.
- 6
-
Synopsys Inc., SUPREM-IV, Two-Dimensional Process Simulation Program,
2003.
- 7
-
Wikipedia, Semiconductor Process Simulation.
http://en.wikipedia.org/wiki/Semiconductor_process_simulation.
- 8
-
Silvaco International, ATHENA User's Manual, 2D Process Simulation
Software, 2004.
- 9
-
Silvaco International, Homepage.
http://www.silvaco.com.
- 10
-
Wikipedia, Silvaco.
http://en.wikipedia.org/wiki/Silvaco.
- 11
-
Silvaco International, ATHENA.
http://www.silvaco.com/products/process_simulation/athena.htm.
- 12
-
Synopsys Inc., Taurus Process & Device, User Manual, 2003.
- 13
-
R. Minixhofer, Integrating Technology Simulation into the Semiconductor
Manufacturing Environment.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 2006.
http://www.iue.tuwien.ac.at/phd/minixhofer/.
- 14
-
Integrated Systems Engineering AG, DIOS, ISE TCAD Release 10.0, 2004.
- 15
-
University of Florida, FLOOPS Manual.
http://www.swamp.tec.ufl.edu/flooxs/FLOOXS Manual/Intro.html.
- 16
-
S. Cea and M. Law, ``Three Dimensional Nonlinear Viscoelastic Oxidation
Modeling,'' in Proc. Int. Conference on the Simulation of Semiconductor
Processes and Devices (SISPAD), pp. 97-98, 1996.
- 17
-
Private communication with Prof. Mark Law in January 2007.
- 18
-
Integrated Systems Engineering AG, ISE News, December 2003.
- 19
-
Integrated Systems Engineering AG, FLOOPS-ISE, ISE TCAD Release 10.0,
2004.
- 20
-
Synopsys Inc., Homepage.
http://www.synopsys.com.
- 21
-
Synopsys Inc., TCAD Products.
http://www.synopsys.com/products/tcad/tcad.html.
- 22
-
Synopsys Inc., Newsletter, December 2004.
http://www.synopsys.com/products/tcad/pdfs/news_dec04.pdf.
- 23
-
Synopsys Inc., Sentaurus: Advanced Simulator for Process Technologies.
http://www.synopsys.com/products/tcad/pdfs/sprocess_ds.pdf.
- 24
-
Synopsys Inc., Newsletter, October 2005.
http://www.synopsys.com/products/tcad/pdfs/news_oct05.pdf.
- 25
-
J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology:
Fundamentals, Practice and Modeling.
New Jersey: Prentice Hall, 2000.
- 26
-
T. Hori, Gate Dielectrics and MOS ULSIs: Principle, Technologies and
Applications, vol. 34 of Electronics and Photonics.
Berlin: Springer, 1997.
- 27
-
B. El-Kareh, Fundamentals of Semiconductor Processing Technologies.
Norwell: Kluwer Academic Publishers, 1995.
- 28
-
C. R. Helms, ``The Atomic and Electronic Structure of the Si-SiO
Interface,'' in The Physics and Chemistry of SiO and the Si-SiO
Interface - 2 (C. R. Helms and B. E. Deal, eds.), New York: Plenum Press,
1988.
- 29
-
E. Rosencher, A. Straboni, S. Rigo, and G. Amsel, ``An O Study of the
Thermal Oxidation of Silicon in Oxygen,'' Appl. Phys. Lett., vol. 34,
no. 4, pp. 254-256, 1979.
- 30
-
R. Singh, ``Rapid Isothermal Processing,'' J. Appl. Phys., vol. 63,
no. 8, pp. R59-R114, 1988.
- 31
-
R. J. Kriegler, ``Neutralization of Na Ions in HCL-Grown SiO,'' Appl. Phys. Lett., vol. 20, no. 11, pp. 449-451, 1972.
- 32
-
B. E. Deal and D. W. Hess, ``Kinetics of the Thermal Oxidation of Silicon in
O/HO and O/Cl Mixtures,'' J. Electrochem. Soc.,
vol. 125, no. 2, pp. 339-346, 1978.
- 33
-
D. W. Hess and B. E. Deal, ``Kinetics of the Thermal Oxidation of Silicon in
O/HCl Mixtures,'' J. Electrochem. Soc., vol. 124, no. 5,
pp. 735-739, 1977.
- 34
-
B. E. Deal, ``Thermal Oxidation Kinetics of Silicon in Pyrogenic HO and 5%
HCL/HO Mixtures,'' J. Electrochem. Soc., vol. 125, no. 4,
pp. 576-579, 1978.
- 35
-
L. N. Lie, R. R. Razouk, and B. E. Deal, ``High Pressure Oxidation of Silicon
in Dry Oxygen,'' J. Electrochem. Soc., vol. 129, no. 12,
pp. 2828-2834, 1982.
- 36
-
R. R. Razouk, L. N. Lie, and B. E. Deal, ``Kinetics of High Pressure Oxidation
of Silicon in Pyrogenic Steam,'' J. Electrochem. Soc., vol. 128,
no. 10, pp. 2214-2220, 1981.
- 37
-
L. E. Katz and L. C. Kimerling, ``Defect Formation during High Pressure, Low
Temperature Steam Oxidation of Silicon,'' J. Electrochem. Soc.,
vol. 125, no. 10, pp. 1680-1683, 1978.
- 38
-
E. A. Lewis and E. A. Irene, ``The Effect of Surface Orientation on Silicon
Oxidation Kinetics,'' J. Electrochem. Soc., vol. 134, no. 9,
pp. 2332-2339, 1987.
- 39
-
J. R. Ligenza, ``Effect of Crystal Orientation on Oxidation Rates of Silicon in
High Pressure Steam,'' Journal of Physical Chemistry, vol. 65, no. 11,
pp. 2011-2014, 1961.
- 40
-
D. A. Buchanan and S. H. Lo, ``Reliability and Intergration of Ultra-Thin Gate
Dielectrics for Advanced CMOS,'' Microelectronic Engineering, vol. 36,
pp. 13-20, 1997.
- 41
-
S. V. Hattangady, H. Niimi, and G. Lucovsky, ``Controlled Nitrogen
Incorporation at the Gate Oxide Surface,'' Appl. Phys. Lett., vol. 66,
no. 25, pp. 3495-3497, 1995.
- 42
-
C. R. Helms, ``Thermal Routes to Ultrathin Oxynitrides,'' in Fundamental
Aspects of Ultrathin Dielectrics on Si-based Devices (E. Garfunkel, E. P.
Gusev, and A. Y. Vul, eds.), pp. 181-190, Dordrecht, The Netherlandes:
Kluwer Academic Publishers, 1998.
- 43
-
G. Lucovsky, A. Banerjee, B. Hinds, B. Claflin, K. Koh, and H. Yang,
``Minimization of Suboxide Transition Regions at Si-SiO Interfaces by 900
°C Rapid Thermal Annealing,'' J. Vac. Sci. Technol. B, vol. 15, no. 4,
pp. 1074-1079, 1997.
- 44
-
W. Ting, H. Hwang, J. Lee, and D. L. Kwong, ``Growth Kinetics of Ultrathin
SiO Films Fabricated by Rapid Thermal Oxidation of Si Substrates in
NO,'' J. Appl. Phys., vol. 70, no. 2, pp. 1072-1074, 1991.
- 45
-
Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hegde, B. Maiti, and S. A. Ajuria,
``Furnace Grown Gate Oxynitride using Nitric Oxide (NO),'' IEEE Trans.
Electron Devices, vol. 41, no. 9, pp. 1608-1613, 1994.
- 46
-
E. P. Gusev, H. C. Lu, T. Gustafsson, E. Garfunkel, M. L. Green, and D. Brasen,
``The Composition of Ultrathin Silicon Oxynitrides Thermally Grown in Nitric
Oxide,'' J. Appl. Phys., vol. 82, no. 2, pp. 896-898, 1997.
- 47
-
K. A. Ellis and R. A. Buhrman, ``Furnace Gas-Phase Chemistry of Silicon
Oxynitridation in NO,'' Appl. Phys. Lett., vol. 68, no. 12,
pp. 1696-1698, 1996.
- 48
-
E. P. Gusev, H. C. Lu, E. Garfunkel, T. Gustafsson, and M. L. Green, ``Growth
and Characterization of Ultrathin Nitrided Silicon Oxide Films,'' IBM J.
Res. Develop., vol. 43, no. 3, pp. 265-286, 1999.
- 49
-
M. L. Green, T. Sorsch, L. C. Feldman, W. N. Lennard, E. P. Gusev,
E. Garfunkel, H. C. Lu, and T. Gustafsson, ``Ultrathin SiON by Rapid
Thermal Heating of Silicon in N at T = 760-1050 °C,'' Appl. Phys.
Lett., vol. 71, no. 20, pp. 2978-2980, 1997.
- 50
-
I. J. Baumvol, F. C. Stedile, J. J. Ganem, I. Trimaille, and S. Rigo, ``Thermal
Nitridation of SiO Films in Ammonia: The Role of Hydrogen,'' J.
Electrochem. Soc., vol. 143, no. 4, pp. 1426-1434, 1996.
- 51
-
B. E. Deal and A. S. Grove, ``General Relationship for the Thermal Oxidation of
Silicon,'' J. Appl. Phys., vol. 36, no. 12, pp. 3770-3778, 1965.
- 52
-
L. Pauling, ``The Nature of Silicon-Oxygen Bonds,'' American
Mineralogist, vol. 65, pp. 321-323, 1980.
- 53
-
Wikipedia, Henry's Law.
http://en.wikipedia.org/wiki/Henry's_law.
- 54
-
Y. J. van der Meulen, ``Kinetics of Thermal Growth of Ultra-Thin Layers of
SiO on Silicon: Experiment,'' J. Electrochem. Soc., vol. 119,
no. 4, pp. 530-534, 1972.
- 55
-
S. M. Hu, ``New Oxide Growth Law and the Thermal Oxidation of Silicon,'' Appl. Phys. Lett., vol. 42, no. 10, pp. 872-874, 1983.
- 56
-
H. Z. Massoud, J. D. Plummer, and E. A. Irene, ``Thermal Oxidation of Silicon
in Dry Oxygen Growth Rate Enhancement in the Thin Regime: Experimental
Results,'' J. Electrochem. Soc., vol. 132, no. 11, pp. 2685-2693,
1985.
- 57
-
H. Z. Massoud, J. D. Plummer, and E. A. Irene, ``Thermal Oxidation of Silicon
in Dry Oxygen: Accurate Determination of the Kinetic Rate Constants,'' J. Electrochem. Soc., vol. 132, no. 7, pp. 1746-1753, 1985.
- 58
-
H. Z. Massoud and J. D. Plummer, ``Analytic Relationship for the Oxidation of
Silicon in Dry Oxygen in the Thin-Film Regime,'' J. Appl. Phys.,
vol. 62, no. 8, pp. 3416-3423, 1987.
- 59
-
C. P. Ho, J. D. Plummer, S. E. Hansen, and R. W. Dutton, ``VLSI Process
Modeling-SUPREM III,'' IEEE Trans. Electron Devices, vol. 30, no. 11,
pp. 1438-1453, 1983.
- 60
-
D. Chin, S. Y. Oh, S. M. Hu, R. W. Dutton, and J. L. Moll, ``Two-Dimensional
Oxidation,'' IEEE Trans. Electron Devices, vol. 30, no. 7,
pp. 744-749, 1983.
- 61
-
M. E. Law, ``Grid Adaption Near Moving Boundaries in Two Dimensions for IC
Process Simulation,'' IEEE Trans. Computer-Aided Design, vol. 14,
no. 10, pp. 1223-1230, 1995.
- 62
-
D. Chin, S. Y. Oh, and R. W. Dutton, ``A General Solution Method for
Two-Dimensional Nonplanar Oxidation,'' IEEE Trans. Electron Devices,
vol. 30, no. 9, pp. 993-998, 1983.
- 63
-
V. Senez, S. Bozek, and B. Baccus, ``3-Dimensional Simulation of Thermal
Diffusion and Oxidation Processes,'' IEDM Technical Digest,
pp. 705-708, 1996.
- 64
-
H. Matsumoto and N. Fukuma, ``Numerical Modeling of Nonuniform Si Thermal
Oxidation,'' IEEE Trans. Electron Devices, vol. 32, no. 2,
pp. 132-140, 1985.
- 65
-
S. Cea, Multidimensional Viscoelastic Modeling of Silicon Oxidation and
Titanium Silicidation.
PhD thesis, University of Florida, Gainesville, 1996.
- 66
-
U. Weinert and E. Rank, ``A Simulation System for Diffuse Oxidation of Silicon:
One-Dimensional Analysis,'' Zeitschrift für Naturforschung A, vol. 46,
no. 11, pp. 955-966, 1991.
- 67
-
E. Rank and U. Weinert, ``A Simulation System for Diffuse Oxidation of Silicon:
A Two-Dimensional Finite Element Approach,'' IEEE Trans. Computer-Aided
Design, vol. 9, no. 5, pp. 543-550, 1990.
- 68
-
F. J. Norton, ``Permeation of Gaseous Oxygen through Vitreous Silica,'' Nature, vol. 191, p. 701, 1961.
- 69
-
A. J. Moulson and J. P. Roberts, ``Water in Silica Glass,'' Transactions
of the Farady Society, vol. 57, pp. 1208-1216, 1961.
- 70
-
D. Gross, W. Hauger, W. Schnell, and P. Wriggers, Technische Mechanik 4:
Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden.
Berlin: Springer Verlag, 4th ed., 2002.
- 71
-
F. Ziegler, Technische Mechanik der Festen und Flüssigen Körper.
Wien: Springer Verlag, 2nd ed., 1992.
- 72
-
R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics, Volume
II.
Reading, MA: Addison-Wesley, 4th ed., 1977.
- 73
-
C. S. Rafferty, Stress Effects in Silicon Oxidation - Simulation and
Experiments.
PhD thesis, Stanford University, California, 1990.
- 74
-
H. Matsumoto and M. Fukuma, ``A Two-Dimensional Si Oxidation Model including
Viscoelasticity,'' in Proc. International Electron Device Meeting
(IEDM), pp. 39-42, 1983.
- 75
-
S. Zelenka, Stress Related Problems in Process Simulation.
PhD thesis, Swiss Federal Institute of Technology, Zurich, 2000.
- 76
-
V. Senez, D. Collard, P. Ferreira, B. Baccus, M. Brault, and J. Lebailly,
``Analysis and Application of a Viscoelastic Model for Silicon Oxidation,''
J. Appl. Phys., vol. 76, no. 6, pp. 3285-3296, 1994.
- 77
-
J. Peng, D. Chidambarrao, and G. R. Srinivasan, ``Novel: A Nonlinear
Viscoelastic Model for Thermal Oxidation of Silicon,'' COMPEL - The
International Journal for Computation and Mathematics in Electrical and
Electronic Engineering, vol. 10, no. 4, pp. 341-353, 1991.
- 78
-
V. Senez, D. Collard, P. Ferreira, and B. Baccus, ``Two-Dimensional Simulation
of Local Oxidation of Silicon: Calibrated Viscoelastic Flow Analysis,'' IEEE Trans. Elect. Dev., vol. 43, no. 5, pp. 720-731, 1996.
- 79
-
G. Schumicki and P. Seegebrecht, Prozeßtechnologie.
Berlin: Springer, 1991.
- 80
-
B. Hoppe, Mikroelektronik 2.
Würzburg: Vogel Verlag, 1998.
- 81
-
S. T. Dunham, ``A Quantitative Model for the Coupled Diffusion of Phosphorus
and Point Defects in Silicon,'' J. Electrochem. Soc., vol. 139, no. 9,
pp. 2628-2635, 1992.
- 82
-
S. T. Dunham, A. H. Gencer, and S. Chakravarathi, ``Modeling of Dopant
Diffusion in Silicon,'' IEICE Trans. Electron., vol. 82, no. 6,
pp. 800-812, 1998.
- 83
-
D. A. Antoniadis, M. Rodoni, and R. W. Dutton, ``Impurity Redistribution in
SiO-Si during Oxidation: A Numerical Solution Including Interfacial
Fluxes,'' J. Electrochem. Soc., vol. 126, no. 11, pp. 1939-1945, 1979.
- 84
-
A. Poncet, ``Finite-Element Simulation of Local Oxidation of Silicon,'' IEEE Trans. Computer-Aided Design, vol. 4, no. 1, pp. 41-53, 1985.
- 85
-
H. R. Schwarz, Methode der Finiten Elemente.
Stuttgart: Teubner, 3rd ed., 1991.
- 86
-
E. B. Becker, G. F. Carey, and J. T. Oden, Finite Elements, An
Introduction, Vol. 1.
Englewood Cliffs: Prentice-Hall, 1981.
- 87
-
W. Ritz, ``Über eine neue Methode zur Lösung gewisser Variationsprobleme in
der mathematischen Physik,'' Journal für reine und angewandte
Mathematik, vol. 135, pp. 1-61, 1909.
- 88
-
K. J. Bathe, Finite Elemente Methoden.
Berlin: Springer Verlag, 2nd ed., 2002.
- 89
-
G. Kämmel, H. Franeck, and H. G. Recke, Einführung in die Methode der
Finiten Elemente.
München: Carl Hanser Verlag, 1988.
- 90
-
R. E. White, An Introduction to the Finite Element Method with
Applications to Nonlinear Problems.
New York: Wiley, 1985.
- 91
-
A. Kost, Numerische Methoden in der Berechnung elektromagnetische Felder.
Berlin: Springer Verlag, 1994.
- 92
-
G. Strang, Applied Mathematics and Scientific Computing.
Wellesley: Wellesley-Cambridge Press, 2007.
- 93
-
Wikipedia, Numerical Ordinary Differential Equations.
http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations.
- 94
-
J. Betten, Finite Elemente für Ingenieure 1.
Berlin: Springer Verlag, 2003.
- 95
-
O. C. Zienkiewicz, The Finite Element Method, Vol. 1.
London: McGraw - Hill, 4th ed., 1989.
- 96
-
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in several Variables.
San Diego: Academic Press, 1970.
- 97
-
C. Überhuber, Computernumerik.
Berlin: Springer Verlag, 2nd ed., 1995.
- 98
-
R. Klima, Three-Dimensional Device Simulation with Minimos-NT.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 2002.
http://www.iue.tuwien.ac.at/phd/klima/.
- 99
-
T. Binder, Rigoros Integration of Semiconductor Process and Device
Simulatior.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 2002.
http://www.iue.tuwien.ac.at/phd/binder/.
- 100
-
S. Wagner, ``The Minimos-NT Linear Equation Solving Module,'' Diplomarbeit,
Institute for Microelectronics, Vienna University of Technology, 2001.
- 101
-
H. J. Dirschmid, Mathematische Grundlagend der Elektrotechnik.
Braunschweig: Vieweg, 4th ed., 1992.
- 102
-
S. Wagner, T. Grasser, C. Fischer, and S. Selberherr, ``An Advanced Equation
Assembly Module,'' Engineering with Computers, vol. 21, pp. 151-163,
2005.
- 103
-
R. Bauer, R. Sabelka, and C. Harlander, The Smart Analysis Programs,
User's Manual for Version 2.0.
Institute for Microelectronics, Vienna University of Technology,
1999.
- 104
-
W. Wessner, H. Ceric, C. Heitzinger, A. Hössinger, and S. Selberherr,
``Anisotropic Mesh Adaption Governed by a Hessian Matrix Metric,'' in Proc. 15 European Simulation Symposium (ESS), pp. 41-46, 2003.
- 105
-
P. Fleischmann, Mesh Generation for Technology CAD in Three Dimensions.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 1999.
http://www.iue.tuwien.ac.at/phd/fleischmann/.
- 106
-
The GNU Triangulated Surface Library, The GTS Library, 2006.
http://gts.sourceforge.net/.
- 107
-
A. Hössinger, J. Cervenka, and S. Selberherr, ``A Multistage Smoothing
Algorithm for Coupling Cellular and Polygonal Datastructures,'' in Proc.
Int. Conference on the Simulation of Semiconductor Processes and Devices
(SISPAD), pp. 259-262, 2003.
- 108
-
S. Wagner, S. Holzer, R. Strasser, R. Plasum, T. Grasser, and S. Selberherr,
SIESTA - The Simulation Environment for Semiconductor Technology
Analysis.
Institute for Microelectronics, Vienna University of Technology,
2003.
http://www.iue.tuwien.ac.at/software.html.
- 109
-
D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, ``Two-Dimensional
Thermal Oxidation of Silicon - II. Modeling Stress Effects in Wet Oxides,''
IEEE Trans. Electron Devices, vol. 35, no. 1, pp. 25-37, 1988.
- 110
-
P. Sutardja and W. G. Oldham, ``Modeling of Stress Effects in Silicon
Oxidation,'' IEEE Trans. Electron Devices, vol. 36, no. 11,
pp. 2415-2421, 1989.
- 111
-
H. Umimoto and S. Odanaka, ``Three-Dimensional Numerical Simulation of Local
Oxidation of Silicon,'' IEEE Trans. Electron Devices, vol. 38, no. 3,
pp. 505-511, 1991.
- 112
-
P. Ferreira, V. Senez, and B. Baccus, ``Mechanical Stress Analysis of a LDD
MOSFET Structure,'' IEEE Trans. Electron Devices, vol. 43, no. 9,
pp. 1525-1532, 1996.
- 113
-
A. S. Oates, ``Electromigration Failure of Contacts and Vias in Sub-Mircon
Integrated Curcuit Metallizations,'' Microelectronics Reliability,
vol. 36, no. 7, pp. 925-953, 1996.
- 114
-
D. Dalleau and K. Weide-Zaage, ``Three-Dimensional Voids Simulation in Chip
Metallization Structures: a Contribution to Reliability Evaluation,'' Microelectronics Reliability, vol. 41, no. 9, pp. 1625-1630, 2001.
- 115
-
D. N. Bhate, A. Kumar, and A. F. Bower, ``Diffuse Interface Model for
Electromigration and Stress Voiding,'' J. Appl. Phys., vol. 87, no. 4,
pp. 1712-1721, 2000.
- 116
-
I. A. Blech, ``Electromigration in Thin Aluminium Films on Titanium Nitride,''
J. Appl. Phys., vol. 47, no. 4, pp. 1203-1208, 1976.
- 117
-
D. R. Fridline and A. F. Bower, ``Influence of Anisotropic Surface Diffusivity
on Electromigration Induced Void Migration and Evolution,'' J. Appl.
Phys., vol. 85, no. 6, pp. 3168-3174, 1999.
- 118
-
H. Ceric, R. Sabelka, S. Holzer, W. Wessner, S. Wagner, T. Grasser, and
S. Selberherr, ``The Evolution of the Resistance and Current Density During
Electromigration,'' in Proc. Int. Conference on the Simulation of
Semiconductor Processes and Devices (SISPAD), pp. 331-334, 2004.
- 119
-
M. A. Meyer, M. Herrmann, E. Langer, and E. Zschech, ``In Situ SEM Observation
of Electromigration Phenomena in Fully Embedded Copper Interconnect
Structures,'' Microelectronic Engineering, vol. 64, pp. 375-382, 2002.
- 120
-
C. K. Hu, B. Luther, F. B. Kaufman, J. Hummel, C. Uzoh, and D. J. Pearson,
``Copper Interconnection Integration and Reliability,'' Thin Solid
Films, vol. 262, pp. 84-92, 1995.
- 121
-
J. R. Lloyd and J. J. Clement, ``Electromigration in Copper Conductors,'' Thin Solid Films, vol. 262, pp. 135-141, 1995.
- 122
-
M. R. Gungor, D. Maroudas, and L. J. Gray, ``Effects of Mechanical Stress on
Electromigration-Driven Transgranular Void Dynamics in Passivated Metallic
Thin Films,'' Appl. Phys. Lett., vol. 73, no. 26, pp. 3848-3850, 1998.
- 123
-
H. Ceric, Numerical Techniques in Modern TCAD.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 2005.
http://www.iue.tuwien.ac.at/phd/ceric/.
- 124
-
R. Sabelka and S. Selberherr, ``A Finite Element Simulator for
Three-Dimensional Analysis of Interconnect Structures,'' Microelectronics Journal, vol. 32, no. 2, pp. 163-171, 2001.
- 125
-
C. Harlander, R. Sabelka, R. Minixhofer, and S. Selberherr, ``Three-Dimensional
Transient Electro-Thermal Simulation,'' in Proc. Therminic Workshop,
pp. 169-172, 1999.
- 126
-
R. Sabelka, Dreidimensionale Finite Elemente Simulation von
Verdrahtungsstrukturen auf Integrierten Schaltungen.
Dissertation, Institute for Microelectronics, Vienna University of
Technology, 2001.
http://www.iue.tuwien.ac.at/phd/sabelka/.
- 127
-
D. Ang and R. V. Ramanujan, ``Hydrostatic Stress and Hydrostatic Stress
Gradients in Passivated Copper Interconnects,'' Materials Science and
Engineering A, vol. 423, pp. 157-165, 2006.
- 128
-
K. Hoshino, H. Yagi, and H. Tsuchikawa, ``TiN-Encapsulated Copper Interconnects
for ULSI Application,'' in Proc. IEEE VLSI Multilevel
Interconnections Conference (VMIC), pp. 226-232, 1989.
- 129
-
K. Weide, X. Yu, and F. Menhorn, ``Finite Element Investigations of Mechanical
Stress in Metallization Structures,'' Microelectronics Reliability,
vol. 36, no. 11/12, pp. 1703-1706, 1996.
- 130
-
D. O. Thompson and D. K. Holmes, ``Dislocation Contribution to the Temperature
Dependence of the Internal Friction and Young's Modulus of Copper,'' J.
Appl. Phys., vol. 30, no. 4, pp. 525-541, 1959.
- 131
-
T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan,
``Thermoelectric Properties of SbTe under Pressure and Uniaxial
Stress,'' Physical Review B, vol. 68, no. 085210, pp. 1-8, 1996.
- 132
-
A. Witvrouw, M. Gromova, A. Mehta, S. Sedky, P. D. Moor, K. Baert, and C. van
Hoof, ``Poly-SiGe, a Superb Material for MEMS,'' Materials
Research Society Symposium Proceeding, vol. 782, pp. A2.1.1-A2.1.12, 2004.
- 133
-
M. F. Dorner and W. D. Nix, ``Stresses and Deformation Processes in
Thin Films on Substrates,'' CRC Critical Reviews in Solid State
and Materials Sciences, vol. 14, no. 3, pp. 225-267, 1988.
- 134
-
G. Russo and P. Smereka, ``A Level-Set Method for the Evolution of Faceted
Crystals,'' SIAM J. Sci. Comp, vol. 21, no. 6, pp. 2073-2095, 2000.
- 135
-
P. Smereka, X. Li, G. Russo, and D. J. Srolovitz, ``Simulation of Faceted
Film Growth in Three Dimensions: Microstructure, Morphology and
Texture,'' Acta Materialia, vol. 53, pp. 1191-1204, 2005.
- 136
-
B. W. Shelton, A. Rajamani, A. Bhandari, E. Chason, S. K. Hong, and
R. Beresford, ``Competition between Tensile and Compressive Stress Mechanisms
during Volmer-Weber Growth of Aluminium Nitride Films,'' J. Appl.
Phys., vol. 98, no. 043509, 2005.
- 137
-
P. G. Shewmon, Transformation in Metals.
McGraw-Hill, New York, 1969.
- 138
-
T. van der Donck, J. Boost, C. Rusu, K. Baert, C. van Hoof, J. P. Celis, and
A. Witvrouw, ``Effect of Deposition Parameters on the Stress Gradient of CVD
and PECVD poly-SiGe for MEMS Applications,'' in Proc. of SPIE -
Micromachining and Microfabrication Process Technology IX, vol. 5342, (San
Jose, USA), pp. 8-18, 2004.
- 139
-
R. W. Hoffman, ``Stresses in Thin Films: The Relevance of Grain Boundaries and
Impurities,'' Thin Solid Films, vol. 34, pp. 185-190, 1976.
- 140
-
K. Cholevas, N. Liosatos, A. E. Romanov, M. Zaiser, and E. C. Aifantis,
``Misfit Dislocation Patterning in Thin Films,'' Physica Status Solidi
(B), vol. 209, no. 10, pp. 295-304, 1998.
- 141
-
E. Klokholm and B. S. Berry, ``Intinsic Stress in Evaporated Metal Films,''
J. Electrochem. Soc., vol. 115, no. 8, pp. 823-826, 1968.
- 142
-
P. Chaudhari, ``Grain Growth and Stress Relief in Thin Films,'' J. Vac.
Sci. Techn., vol. 9, no. 1, pp. 520-522, 1972.
- 143
-
B. W. Sheldon, A. Ditkowski, R. Beresford, E. Chason, and J. Rankin, ``Intinsic
Compressive Stress in Polycrystalline Films with Negligible Grain Boundary
Diffusion,'' J. Appl. Phys., vol. 94, no. 2, pp. 948-957, 2003.
- 144
-
E. Chason, B. W. Sheldon, and L. B. Freund, ``Origin of Compressive Residual
Stress in Polycrystalline Thin Films,'' Physical Review Letters,
vol. 88, no. 15, p. 156103, 2002.
- 145
-
L. B. Freund and E. Chason, ``Model for Stress Generated upon Contact
of Neighboring Islands on the Surface of a Substrate,'' J. Appl.
Phys., vol. 89, no. 9, pp. 4866-4873, 2001.
- 146
-
S. V. Bobylev and I. A. Ovidko, ``Faceted Grain Boundaries in Polycrystalline
Films,'' Physics of the Solid State, vol. 45, no. 10, pp. 1926-1931,
2003.
- 147
-
A. Molfese, A. Mehta, and A. Witvrouw, ``Determination of Stress Profile
and Optimization of Stress Gradient in PECVD Poly-SiGe Films,''
Sensors and Actuators A, vol. 118, no. 2, pp. 313-321, 2005.
Next: Own Publications
Up: Dissertation Christian Hollauer
Previous: 10. Summary and Conclusions
Ch. Hollauer: Modeling of Thermal Oxidation and Stress Effects