next up previous contents
Next: Own Publications Up: Dissertation Christian Hollauer Previous: 10. Summary and Conclusions

Bibliography

1
A. Hössinger, Simulation of Ion Implantation for ULSI Technology.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 2000.

http://www.iue.tuwien.ac.at/phd/hoessinger/.

2
M. Radi, Three-Dimensional Simulation of Thermal Oxidation.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 1998.

http://www.iue.tuwien.ac.at/phd/radi/.

3
Stanford University, SUPREM-IV.

http://www-tcad.stanford.edu/tcad/programs/suprem45.html.

4
Stanford University, TCAD.
http://www-tcad.stanford.edu/index.html.

5
Integrated Circuits Laboratory, Standford University, SUPREM-IV.GS, Two-Dimensional Process Simulation for Silicon and Gallium Arsenide, 1993.

6
Synopsys Inc., SUPREM-IV, Two-Dimensional Process Simulation Program, 2003.

7
Wikipedia, Semiconductor Process Simulation.

http://en.wikipedia.org/wiki/Semiconductor_process_simulation.

8
Silvaco International, ATHENA User's Manual, 2D Process Simulation Software, 2004.

9
Silvaco International, Homepage.
http://www.silvaco.com.

10
Wikipedia, Silvaco.
http://en.wikipedia.org/wiki/Silvaco.

11
Silvaco International, ATHENA.

http://www.silvaco.com/products/process_simulation/athena.htm.

12
Synopsys Inc., Taurus Process & Device, User Manual, 2003.

13
R. Minixhofer, Integrating Technology Simulation into the Semiconductor Manufacturing Environment.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 2006.
http://www.iue.tuwien.ac.at/phd/minixhofer/.

14
Integrated Systems Engineering AG, DIOS, ISE TCAD Release 10.0, 2004.

15
University of Florida, FLOOPS Manual.

http://www.swamp.tec.ufl.edu/$ \sim$flooxs/FLOOXS Manual/Intro.html.

16
S. Cea and M. Law, ``Three Dimensional Nonlinear Viscoelastic Oxidation Modeling,'' in Proc. Int. Conference on the Simulation of Semiconductor Processes and Devices (SISPAD), pp. 97-98, 1996.

17
Private communication with Prof. Mark Law in January 2007.

18
Integrated Systems Engineering AG, ISE News, December 2003.

19
Integrated Systems Engineering AG, FLOOPS-ISE, ISE TCAD Release 10.0, 2004.

20
Synopsys Inc., Homepage.
http://www.synopsys.com.

21
Synopsys Inc., TCAD Products.
http://www.synopsys.com/products/tcad/tcad.html.

22
Synopsys Inc., Newsletter, December 2004.

http://www.synopsys.com/products/tcad/pdfs/news_dec04.pdf.

23
Synopsys Inc., Sentaurus: Advanced Simulator for Process Technologies.

http://www.synopsys.com/products/tcad/pdfs/sprocess_ds.pdf.

24
Synopsys Inc., Newsletter, October 2005.

http://www.synopsys.com/products/tcad/pdfs/news_oct05.pdf.

25
J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling.
New Jersey: Prentice Hall, 2000.

26
T. Hori, Gate Dielectrics and MOS ULSIs: Principle, Technologies and Applications, vol. 34 of Electronics and Photonics.
Berlin: Springer, 1997.

27
B. El-Kareh, Fundamentals of Semiconductor Processing Technologies.
Norwell: Kluwer Academic Publishers, 1995.

28
C. R. Helms, ``The Atomic and Electronic Structure of the Si-SiO$ _2$ Interface,'' in The Physics and Chemistry of SiO$ _2$ and the Si-SiO$ _2$ Interface - 2 (C. R. Helms and B. E. Deal, eds.), New York: Plenum Press, 1988.

29
E. Rosencher, A. Straboni, S. Rigo, and G. Amsel, ``An $ ^{18}$O Study of the Thermal Oxidation of Silicon in Oxygen,'' Appl. Phys. Lett., vol. 34, no. 4, pp. 254-256, 1979.

30
R. Singh, ``Rapid Isothermal Processing,'' J. Appl. Phys., vol. 63, no. 8, pp. R59-R114, 1988.

31
R. J. Kriegler, ``Neutralization of Na$ ^+$ Ions in HCL-Grown SiO$ _2$,'' Appl. Phys. Lett., vol. 20, no. 11, pp. 449-451, 1972.

32
B. E. Deal and D. W. Hess, ``Kinetics of the Thermal Oxidation of Silicon in O$ _2$/H$ _2$O and O$ _2$/Cl$ _2$ Mixtures,'' J. Electrochem. Soc., vol. 125, no. 2, pp. 339-346, 1978.

33
D. W. Hess and B. E. Deal, ``Kinetics of the Thermal Oxidation of Silicon in O$ _2$/HCl Mixtures,'' J. Electrochem. Soc., vol. 124, no. 5, pp. 735-739, 1977.

34
B. E. Deal, ``Thermal Oxidation Kinetics of Silicon in Pyrogenic H$ _2$O and 5% HCL/H$ _2$O Mixtures,'' J. Electrochem. Soc., vol. 125, no. 4, pp. 576-579, 1978.

35
L. N. Lie, R. R. Razouk, and B. E. Deal, ``High Pressure Oxidation of Silicon in Dry Oxygen,'' J. Electrochem. Soc., vol. 129, no. 12, pp. 2828-2834, 1982.

36
R. R. Razouk, L. N. Lie, and B. E. Deal, ``Kinetics of High Pressure Oxidation of Silicon in Pyrogenic Steam,'' J. Electrochem. Soc., vol. 128, no. 10, pp. 2214-2220, 1981.

37
L. E. Katz and L. C. Kimerling, ``Defect Formation during High Pressure, Low Temperature Steam Oxidation of Silicon,'' J. Electrochem. Soc., vol. 125, no. 10, pp. 1680-1683, 1978.

38
E. A. Lewis and E. A. Irene, ``The Effect of Surface Orientation on Silicon Oxidation Kinetics,'' J. Electrochem. Soc., vol. 134, no. 9, pp. 2332-2339, 1987.

39
J. R. Ligenza, ``Effect of Crystal Orientation on Oxidation Rates of Silicon in High Pressure Steam,'' Journal of Physical Chemistry, vol. 65, no. 11, pp. 2011-2014, 1961.

40
D. A. Buchanan and S. H. Lo, ``Reliability and Intergration of Ultra-Thin Gate Dielectrics for Advanced CMOS,'' Microelectronic Engineering, vol. 36, pp. 13-20, 1997.

41
S. V. Hattangady, H. Niimi, and G. Lucovsky, ``Controlled Nitrogen Incorporation at the Gate Oxide Surface,'' Appl. Phys. Lett., vol. 66, no. 25, pp. 3495-3497, 1995.

42
C. R. Helms, ``Thermal Routes to Ultrathin Oxynitrides,'' in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices (E. Garfunkel, E. P. Gusev, and A. Y. Vul, eds.), pp. 181-190, Dordrecht, The Netherlandes: Kluwer Academic Publishers, 1998.

43
G. Lucovsky, A. Banerjee, B. Hinds, B. Claflin, K. Koh, and H. Yang, ``Minimization of Suboxide Transition Regions at Si-SiO$ _2$ Interfaces by 900 °C Rapid Thermal Annealing,'' J. Vac. Sci. Technol. B, vol. 15, no. 4, pp. 1074-1079, 1997.

44
W. Ting, H. Hwang, J. Lee, and D. L. Kwong, ``Growth Kinetics of Ultrathin SiO$ _2$ Films Fabricated by Rapid Thermal Oxidation of Si Substrates in N$ _2$O,'' J. Appl. Phys., vol. 70, no. 2, pp. 1072-1074, 1991.

45
Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hegde, B. Maiti, and S. A. Ajuria, ``Furnace Grown Gate Oxynitride using Nitric Oxide (NO),'' IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1608-1613, 1994.

46
E. P. Gusev, H. C. Lu, T. Gustafsson, E. Garfunkel, M. L. Green, and D. Brasen, ``The Composition of Ultrathin Silicon Oxynitrides Thermally Grown in Nitric Oxide,'' J. Appl. Phys., vol. 82, no. 2, pp. 896-898, 1997.

47
K. A. Ellis and R. A. Buhrman, ``Furnace Gas-Phase Chemistry of Silicon Oxynitridation in N$ _2$O,'' Appl. Phys. Lett., vol. 68, no. 12, pp. 1696-1698, 1996.

48
E. P. Gusev, H. C. Lu, E. Garfunkel, T. Gustafsson, and M. L. Green, ``Growth and Characterization of Ultrathin Nitrided Silicon Oxide Films,'' IBM J. Res. Develop., vol. 43, no. 3, pp. 265-286, 1999.

49
M. L. Green, T. Sorsch, L. C. Feldman, W. N. Lennard, E. P. Gusev, E. Garfunkel, H. C. Lu, and T. Gustafsson, ``Ultrathin SiO$ _x$N$ _y$ by Rapid Thermal Heating of Silicon in N$ _2$ at T = 760-1050 °C,'' Appl. Phys. Lett., vol. 71, no. 20, pp. 2978-2980, 1997.

50
I. J. Baumvol, F. C. Stedile, J. J. Ganem, I. Trimaille, and S. Rigo, ``Thermal Nitridation of SiO$ _2$ Films in Ammonia: The Role of Hydrogen,'' J. Electrochem. Soc., vol. 143, no. 4, pp. 1426-1434, 1996.

51
B. E. Deal and A. S. Grove, ``General Relationship for the Thermal Oxidation of Silicon,'' J. Appl. Phys., vol. 36, no. 12, pp. 3770-3778, 1965.

52
L. Pauling, ``The Nature of Silicon-Oxygen Bonds,'' American Mineralogist, vol. 65, pp. 321-323, 1980.

53
Wikipedia, Henry's Law.
http://en.wikipedia.org/wiki/Henry's_law.

54
Y. J. van der Meulen, ``Kinetics of Thermal Growth of Ultra-Thin Layers of SiO$ _2$ on Silicon: Experiment,'' J. Electrochem. Soc., vol. 119, no. 4, pp. 530-534, 1972.

55
S. M. Hu, ``New Oxide Growth Law and the Thermal Oxidation of Silicon,'' Appl. Phys. Lett., vol. 42, no. 10, pp. 872-874, 1983.

56
H. Z. Massoud, J. D. Plummer, and E. A. Irene, ``Thermal Oxidation of Silicon in Dry Oxygen Growth Rate Enhancement in the Thin Regime: Experimental Results,'' J. Electrochem. Soc., vol. 132, no. 11, pp. 2685-2693, 1985.

57
H. Z. Massoud, J. D. Plummer, and E. A. Irene, ``Thermal Oxidation of Silicon in Dry Oxygen: Accurate Determination of the Kinetic Rate Constants,'' J. Electrochem. Soc., vol. 132, no. 7, pp. 1746-1753, 1985.

58
H. Z. Massoud and J. D. Plummer, ``Analytic Relationship for the Oxidation of Silicon in Dry Oxygen in the Thin-Film Regime,'' J. Appl. Phys., vol. 62, no. 8, pp. 3416-3423, 1987.

59
C. P. Ho, J. D. Plummer, S. E. Hansen, and R. W. Dutton, ``VLSI Process Modeling-SUPREM III,'' IEEE Trans. Electron Devices, vol. 30, no. 11, pp. 1438-1453, 1983.

60
D. Chin, S. Y. Oh, S. M. Hu, R. W. Dutton, and J. L. Moll, ``Two-Dimensional Oxidation,'' IEEE Trans. Electron Devices, vol. 30, no. 7, pp. 744-749, 1983.

61
M. E. Law, ``Grid Adaption Near Moving Boundaries in Two Dimensions for IC Process Simulation,'' IEEE Trans. Computer-Aided Design, vol. 14, no. 10, pp. 1223-1230, 1995.

62
D. Chin, S. Y. Oh, and R. W. Dutton, ``A General Solution Method for Two-Dimensional Nonplanar Oxidation,'' IEEE Trans. Electron Devices, vol. 30, no. 9, pp. 993-998, 1983.

63
V. Senez, S. Bozek, and B. Baccus, ``3-Dimensional Simulation of Thermal Diffusion and Oxidation Processes,'' IEDM Technical Digest, pp. 705-708, 1996.

64
H. Matsumoto and N. Fukuma, ``Numerical Modeling of Nonuniform Si Thermal Oxidation,'' IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 132-140, 1985.

65
S. Cea, Multidimensional Viscoelastic Modeling of Silicon Oxidation and Titanium Silicidation.
PhD thesis, University of Florida, Gainesville, 1996.

66
U. Weinert and E. Rank, ``A Simulation System for Diffuse Oxidation of Silicon: One-Dimensional Analysis,'' Zeitschrift für Naturforschung A, vol. 46, no. 11, pp. 955-966, 1991.

67
E. Rank and U. Weinert, ``A Simulation System for Diffuse Oxidation of Silicon: A Two-Dimensional Finite Element Approach,'' IEEE Trans. Computer-Aided Design, vol. 9, no. 5, pp. 543-550, 1990.

68
F. J. Norton, ``Permeation of Gaseous Oxygen through Vitreous Silica,'' Nature, vol. 191, p. 701, 1961.

69
A. J. Moulson and J. P. Roberts, ``Water in Silica Glass,'' Transactions of the Farady Society, vol. 57, pp. 1208-1216, 1961.

70
D. Gross, W. Hauger, W. Schnell, and P. Wriggers, Technische Mechanik 4: Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden.
Berlin: Springer Verlag, 4th ed., 2002.

71
F. Ziegler, Technische Mechanik der Festen und Flüssigen Körper.
Wien: Springer Verlag, 2nd ed., 1992.

72
R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics, Volume II.
Reading, MA: Addison-Wesley, 4th ed., 1977.

73
C. S. Rafferty, Stress Effects in Silicon Oxidation - Simulation and Experiments.
PhD thesis, Stanford University, California, 1990.

74
H. Matsumoto and M. Fukuma, ``A Two-Dimensional Si Oxidation Model including Viscoelasticity,'' in Proc. International Electron Device Meeting (IEDM), pp. 39-42, 1983.

75
S. Zelenka, Stress Related Problems in Process Simulation.
PhD thesis, Swiss Federal Institute of Technology, Zurich, 2000.

76
V. Senez, D. Collard, P. Ferreira, B. Baccus, M. Brault, and J. Lebailly, ``Analysis and Application of a Viscoelastic Model for Silicon Oxidation,'' J. Appl. Phys., vol. 76, no. 6, pp. 3285-3296, 1994.

77
J. Peng, D. Chidambarrao, and G. R. Srinivasan, ``Novel: A Nonlinear Viscoelastic Model for Thermal Oxidation of Silicon,'' COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 10, no. 4, pp. 341-353, 1991.

78
V. Senez, D. Collard, P. Ferreira, and B. Baccus, ``Two-Dimensional Simulation of Local Oxidation of Silicon: Calibrated Viscoelastic Flow Analysis,'' IEEE Trans. Elect. Dev., vol. 43, no. 5, pp. 720-731, 1996.

79
G. Schumicki and P. Seegebrecht, Prozeßtechnologie.
Berlin: Springer, 1991.

80
B. Hoppe, Mikroelektronik 2.
Würzburg: Vogel Verlag, 1998.

81
S. T. Dunham, ``A Quantitative Model for the Coupled Diffusion of Phosphorus and Point Defects in Silicon,'' J. Electrochem. Soc., vol. 139, no. 9, pp. 2628-2635, 1992.

82
S. T. Dunham, A. H. Gencer, and S. Chakravarathi, ``Modeling of Dopant Diffusion in Silicon,'' IEICE Trans. Electron., vol. 82, no. 6, pp. 800-812, 1998.

83
D. A. Antoniadis, M. Rodoni, and R. W. Dutton, ``Impurity Redistribution in SiO$ _2$-Si during Oxidation: A Numerical Solution Including Interfacial Fluxes,'' J. Electrochem. Soc., vol. 126, no. 11, pp. 1939-1945, 1979.

84
A. Poncet, ``Finite-Element Simulation of Local Oxidation of Silicon,'' IEEE Trans. Computer-Aided Design, vol. 4, no. 1, pp. 41-53, 1985.

85
H. R. Schwarz, Methode der Finiten Elemente.
Stuttgart: Teubner, 3rd ed., 1991.

86
E. B. Becker, G. F. Carey, and J. T. Oden, Finite Elements, An Introduction, Vol. 1.
Englewood Cliffs: Prentice-Hall, 1981.

87
W. Ritz, ``Über eine neue Methode zur Lösung gewisser Variationsprobleme in der mathematischen Physik,'' Journal für reine und angewandte Mathematik, vol. 135, pp. 1-61, 1909.

88
K. J. Bathe, Finite Elemente Methoden.
Berlin: Springer Verlag, 2nd ed., 2002.

89
G. Kämmel, H. Franeck, and H. G. Recke, Einführung in die Methode der Finiten Elemente.
München: Carl Hanser Verlag, 1988.

90
R. E. White, An Introduction to the Finite Element Method with Applications to Nonlinear Problems.
New York: Wiley, 1985.

91
A. Kost, Numerische Methoden in der Berechnung elektromagnetische Felder.
Berlin: Springer Verlag, 1994.

92
G. Strang, Applied Mathematics and Scientific Computing.
Wellesley: Wellesley-Cambridge Press, 2007.

93
Wikipedia, Numerical Ordinary Differential Equations.

http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations.

94
J. Betten, Finite Elemente für Ingenieure 1.
Berlin: Springer Verlag, 2003.

95
O. C. Zienkiewicz, The Finite Element Method, Vol. 1.
London: McGraw - Hill, 4th ed., 1989.

96
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in several Variables.
San Diego: Academic Press, 1970.

97
C. Überhuber, Computernumerik.
Berlin: Springer Verlag, 2nd ed., 1995.

98
R. Klima, Three-Dimensional Device Simulation with Minimos-NT.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 2002.

http://www.iue.tuwien.ac.at/phd/klima/.

99
T. Binder, Rigoros Integration of Semiconductor Process and Device Simulatior.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 2002.

http://www.iue.tuwien.ac.at/phd/binder/.

100
S. Wagner, ``The Minimos-NT Linear Equation Solving Module,'' Diplomarbeit, Institute for Microelectronics, Vienna University of Technology, 2001.

101
H. J. Dirschmid, Mathematische Grundlagend der Elektrotechnik.
Braunschweig: Vieweg, 4th ed., 1992.

102
S. Wagner, T. Grasser, C. Fischer, and S. Selberherr, ``An Advanced Equation Assembly Module,'' Engineering with Computers, vol. 21, pp. 151-163, 2005.

103
R. Bauer, R. Sabelka, and C. Harlander, The Smart Analysis Programs, User's Manual for Version 2.0.
Institute for Microelectronics, Vienna University of Technology, 1999.

104
W. Wessner, H. Ceric, C. Heitzinger, A. Hössinger, and S. Selberherr, ``Anisotropic Mesh Adaption Governed by a Hessian Matrix Metric,'' in Proc. 15$ ^{th}$ European Simulation Symposium (ESS), pp. 41-46, 2003.

105
P. Fleischmann, Mesh Generation for Technology CAD in Three Dimensions.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 1999.

http://www.iue.tuwien.ac.at/phd/fleischmann/.

106
The GNU Triangulated Surface Library, The GTS Library, 2006.

http://gts.sourceforge.net/.

107
A. Hössinger, J. Cervenka, and S. Selberherr, ``A Multistage Smoothing Algorithm for Coupling Cellular and Polygonal Datastructures,'' in Proc. Int. Conference on the Simulation of Semiconductor Processes and Devices (SISPAD), pp. 259-262, 2003.

108
S. Wagner, S. Holzer, R. Strasser, R. Plasum, T. Grasser, and S. Selberherr, SIESTA - The Simulation Environment for Semiconductor Technology Analysis.
Institute for Microelectronics, Vienna University of Technology, 2003.

http://www.iue.tuwien.ac.at/software.html.

109
D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, ``Two-Dimensional Thermal Oxidation of Silicon - II. Modeling Stress Effects in Wet Oxides,'' IEEE Trans. Electron Devices, vol. 35, no. 1, pp. 25-37, 1988.

110
P. Sutardja and W. G. Oldham, ``Modeling of Stress Effects in Silicon Oxidation,'' IEEE Trans. Electron Devices, vol. 36, no. 11, pp. 2415-2421, 1989.

111
H. Umimoto and S. Odanaka, ``Three-Dimensional Numerical Simulation of Local Oxidation of Silicon,'' IEEE Trans. Electron Devices, vol. 38, no. 3, pp. 505-511, 1991.

112
P. Ferreira, V. Senez, and B. Baccus, ``Mechanical Stress Analysis of a LDD MOSFET Structure,'' IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1525-1532, 1996.

113
A. S. Oates, ``Electromigration Failure of Contacts and Vias in Sub-Mircon Integrated Curcuit Metallizations,'' Microelectronics Reliability, vol. 36, no. 7, pp. 925-953, 1996.

114
D. Dalleau and K. Weide-Zaage, ``Three-Dimensional Voids Simulation in Chip Metallization Structures: a Contribution to Reliability Evaluation,'' Microelectronics Reliability, vol. 41, no. 9, pp. 1625-1630, 2001.

115
D. N. Bhate, A. Kumar, and A. F. Bower, ``Diffuse Interface Model for Electromigration and Stress Voiding,'' J. Appl. Phys., vol. 87, no. 4, pp. 1712-1721, 2000.

116
I. A. Blech, ``Electromigration in Thin Aluminium Films on Titanium Nitride,'' J. Appl. Phys., vol. 47, no. 4, pp. 1203-1208, 1976.

117
D. R. Fridline and A. F. Bower, ``Influence of Anisotropic Surface Diffusivity on Electromigration Induced Void Migration and Evolution,'' J. Appl. Phys., vol. 85, no. 6, pp. 3168-3174, 1999.

118
H. Ceric, R. Sabelka, S. Holzer, W. Wessner, S. Wagner, T. Grasser, and S. Selberherr, ``The Evolution of the Resistance and Current Density During Electromigration,'' in Proc. Int. Conference on the Simulation of Semiconductor Processes and Devices (SISPAD), pp. 331-334, 2004.

119
M. A. Meyer, M. Herrmann, E. Langer, and E. Zschech, ``In Situ SEM Observation of Electromigration Phenomena in Fully Embedded Copper Interconnect Structures,'' Microelectronic Engineering, vol. 64, pp. 375-382, 2002.

120
C. K. Hu, B. Luther, F. B. Kaufman, J. Hummel, C. Uzoh, and D. J. Pearson, ``Copper Interconnection Integration and Reliability,'' Thin Solid Films, vol. 262, pp. 84-92, 1995.

121
J. R. Lloyd and J. J. Clement, ``Electromigration in Copper Conductors,'' Thin Solid Films, vol. 262, pp. 135-141, 1995.

122
M. R. Gungor, D. Maroudas, and L. J. Gray, ``Effects of Mechanical Stress on Electromigration-Driven Transgranular Void Dynamics in Passivated Metallic Thin Films,'' Appl. Phys. Lett., vol. 73, no. 26, pp. 3848-3850, 1998.

123
H. Ceric, Numerical Techniques in Modern TCAD.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 2005.
http://www.iue.tuwien.ac.at/phd/ceric/.

124
R. Sabelka and S. Selberherr, ``A Finite Element Simulator for Three-Dimensional Analysis of Interconnect Structures,'' Microelectronics Journal, vol. 32, no. 2, pp. 163-171, 2001.

125
C. Harlander, R. Sabelka, R. Minixhofer, and S. Selberherr, ``Three-Dimensional Transient Electro-Thermal Simulation,'' in Proc. Therminic Workshop, pp. 169-172, 1999.

126
R. Sabelka, Dreidimensionale Finite Elemente Simulation von Verdrahtungsstrukturen auf Integrierten Schaltungen.
Dissertation, Institute for Microelectronics, Vienna University of Technology, 2001.
http://www.iue.tuwien.ac.at/phd/sabelka/.

127
D. Ang and R. V. Ramanujan, ``Hydrostatic Stress and Hydrostatic Stress Gradients in Passivated Copper Interconnects,'' Materials Science and Engineering A, vol. 423, pp. 157-165, 2006.

128
K. Hoshino, H. Yagi, and H. Tsuchikawa, ``TiN-Encapsulated Copper Interconnects for ULSI Application,'' in Proc. IEEE $ 6^{th}$ VLSI Multilevel Interconnections Conference (VMIC), pp. 226-232, 1989.

129
K. Weide, X. Yu, and F. Menhorn, ``Finite Element Investigations of Mechanical Stress in Metallization Structures,'' Microelectronics Reliability, vol. 36, no. 11/12, pp. 1703-1706, 1996.

130
D. O. Thompson and D. K. Holmes, ``Dislocation Contribution to the Temperature Dependence of the Internal Friction and Young's Modulus of Copper,'' J. Appl. Phys., vol. 30, no. 4, pp. 525-541, 1959.

131
T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, ``Thermoelectric Properties of Sb$ _2$Te$ _3$ under Pressure and Uniaxial Stress,'' Physical Review B, vol. 68, no. 085210, pp. 1-8, 1996.

132
A. Witvrouw, M. Gromova, A. Mehta, S. Sedky, P. D. Moor, K. Baert, and C. van Hoof, ``Poly-SiGe, a Superb Material for MEMS,'' Materials Research Society Symposium Proceeding, vol. 782, pp. A2.1.1-A2.1.12, 2004.

133
M. F. Dorner and W. D. Nix, ``Stresses and Deformation Processes in Thin Films on Substrates,'' CRC Critical Reviews in Solid State and Materials Sciences, vol. 14, no. 3, pp. 225-267, 1988.

134
G. Russo and P. Smereka, ``A Level-Set Method for the Evolution of Faceted Crystals,'' SIAM J. Sci. Comp, vol. 21, no. 6, pp. 2073-2095, 2000.

135
P. Smereka, X. Li, G. Russo, and D. J. Srolovitz, ``Simulation of Faceted Film Growth in Three Dimensions: Microstructure, Morphology and Texture,'' Acta Materialia, vol. 53, pp. 1191-1204, 2005.

136
B. W. Shelton, A. Rajamani, A. Bhandari, E. Chason, S. K. Hong, and R. Beresford, ``Competition between Tensile and Compressive Stress Mechanisms during Volmer-Weber Growth of Aluminium Nitride Films,'' J. Appl. Phys., vol. 98, no. 043509, 2005.

137
P. G. Shewmon, Transformation in Metals.
McGraw-Hill, New York, 1969.

138
T. van der Donck, J. Boost, C. Rusu, K. Baert, C. van Hoof, J. P. Celis, and A. Witvrouw, ``Effect of Deposition Parameters on the Stress Gradient of CVD and PECVD poly-SiGe for MEMS Applications,'' in Proc. of SPIE - Micromachining and Microfabrication Process Technology IX, vol. 5342, (San Jose, USA), pp. 8-18, 2004.

139
R. W. Hoffman, ``Stresses in Thin Films: The Relevance of Grain Boundaries and Impurities,'' Thin Solid Films, vol. 34, pp. 185-190, 1976.

140
K. Cholevas, N. Liosatos, A. E. Romanov, M. Zaiser, and E. C. Aifantis, ``Misfit Dislocation Patterning in Thin Films,'' Physica Status Solidi (B), vol. 209, no. 10, pp. 295-304, 1998.

141
E. Klokholm and B. S. Berry, ``Intinsic Stress in Evaporated Metal Films,'' J. Electrochem. Soc., vol. 115, no. 8, pp. 823-826, 1968.

142
P. Chaudhari, ``Grain Growth and Stress Relief in Thin Films,'' J. Vac. Sci. Techn., vol. 9, no. 1, pp. 520-522, 1972.

143
B. W. Sheldon, A. Ditkowski, R. Beresford, E. Chason, and J. Rankin, ``Intinsic Compressive Stress in Polycrystalline Films with Negligible Grain Boundary Diffusion,'' J. Appl. Phys., vol. 94, no. 2, pp. 948-957, 2003.

144
E. Chason, B. W. Sheldon, and L. B. Freund, ``Origin of Compressive Residual Stress in Polycrystalline Thin Films,'' Physical Review Letters, vol. 88, no. 15, p. 156103, 2002.

145
L. B. Freund and E. Chason, ``Model for Stress Generated upon Contact of Neighboring Islands on the Surface of a Substrate,'' J. Appl. Phys., vol. 89, no. 9, pp. 4866-4873, 2001.

146
S. V. Bobylev and I. A. Ovidko, ``Faceted Grain Boundaries in Polycrystalline Films,'' Physics of the Solid State, vol. 45, no. 10, pp. 1926-1931, 2003.

147
A. Molfese, A. Mehta, and A. Witvrouw, ``Determination of Stress Profile and Optimization of Stress Gradient in PECVD Poly-SiGe Films,'' Sensors and Actuators A, vol. 118, no. 2, pp. 313-321, 2005.


next up previous contents
Next: Own Publications Up: Dissertation Christian Hollauer Previous: 10. Summary and Conclusions

Ch. Hollauer: Modeling of Thermal Oxidation and Stress Effects